离散植物-食草动物系统混沌行为的NEIMARK-SACKER分岔与控制

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Ö. Gümüs, A. Selvam, R. Janagaraj
{"title":"离散植物-食草动物系统混沌行为的NEIMARK-SACKER分岔与控制","authors":"Ö. Gümüs, A. Selvam, R. Janagaraj","doi":"10.46939/j.sci.arts-22.3-a03","DOIUrl":null,"url":null,"abstract":"In this study, the dynamics of a discrete-time plant-herbivore model obtained using the forward Euler method are discussed. The existence of fixed points is investigated. A topological classification is made to examine the behavior of the positive fixed point where the plant and the herbivore coexist. In addition, the existence conditions and direction of Neimark-Sacker bifurcation of the model are investigated using bifurcation theory. Hybrid control method is applied to control the chaos caused by Neimark-Sacker bifurcation. Examples including time series figures, bifurcation figures, phase portraits and maximum Lyapunov exponent are provided to support our theoretical results.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEIMARK-SACKER BIFURCATION AND CONTROL OF CHAOTIC BEHAVIOR IN A DISCRETE-TIME PLANT-HERBIVORE SYSTEM\",\"authors\":\"Ö. Gümüs, A. Selvam, R. Janagaraj\",\"doi\":\"10.46939/j.sci.arts-22.3-a03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the dynamics of a discrete-time plant-herbivore model obtained using the forward Euler method are discussed. The existence of fixed points is investigated. A topological classification is made to examine the behavior of the positive fixed point where the plant and the herbivore coexist. In addition, the existence conditions and direction of Neimark-Sacker bifurcation of the model are investigated using bifurcation theory. Hybrid control method is applied to control the chaos caused by Neimark-Sacker bifurcation. Examples including time series figures, bifurcation figures, phase portraits and maximum Lyapunov exponent are provided to support our theoretical results.\",\"PeriodicalId\":54169,\"journal\":{\"name\":\"Journal of Science and Arts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46939/j.sci.arts-22.3-a03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-22.3-a03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,讨论了使用正向欧拉方法获得的离散时间植物-食草动物模型的动力学。研究了不动点的存在性。对植物和食草动物共存的正不动点的行为进行了拓扑分类。此外,利用分岔理论研究了该模型Neimark-Sacker分岔的存在条件和方向。将混合控制方法应用于控制由Neimark-Sacker分岔引起的混沌。给出了时间序列图、分岔图、相位图和最大李雅普诺夫指数等例子来支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEIMARK-SACKER BIFURCATION AND CONTROL OF CHAOTIC BEHAVIOR IN A DISCRETE-TIME PLANT-HERBIVORE SYSTEM
In this study, the dynamics of a discrete-time plant-herbivore model obtained using the forward Euler method are discussed. The existence of fixed points is investigated. A topological classification is made to examine the behavior of the positive fixed point where the plant and the herbivore coexist. In addition, the existence conditions and direction of Neimark-Sacker bifurcation of the model are investigated using bifurcation theory. Hybrid control method is applied to control the chaos caused by Neimark-Sacker bifurcation. Examples including time series figures, bifurcation figures, phase portraits and maximum Lyapunov exponent are provided to support our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信