Praphul Kumar, Sanjay Jana, Hari Shyam, Indranil Saha Dalal
{"title":"DPD模拟在平衡和稳定剪切流动中预测聚合物链动力学的有效性","authors":"Praphul Kumar, Sanjay Jana, Hari Shyam, Indranil Saha Dalal","doi":"10.1002/mats.202300045","DOIUrl":null,"url":null,"abstract":"<p>The suitability of dissipative particle dynamics simulations is investigated to predict the dynamics of polymer chains in dilute polymer solutions. The authors find that the predictions depend on the value of the repulsive parameter for bead-bead pairwise interactions used in the DPD simulations (<i>a</i><sub><i>ij</i></sub>). For all systems, the chain sizes and the relaxation time spectrum are analyzed. For <i>a</i><sub><i>ij</i></sub> = 0, theta solvent behaviour is obtained, whereas the dynamics at equilibrium agrees well with the predictions of the Zimm model. For higher values of aij, the static properties of the chain show good solvent behaviour. However, the scaling laws for the chain dynamics at equilibrium show wide variations, with consistent results obtained only at an intermediate value of <i>a</i><sub><i>ij</i></sub> = 25. At higher values of the repulsive parameter (<i>a</i><sub><i>ij</i></sub> ⩾ 25), the simulations are also able to predict the abrupt cut-off in the relaxation spectrum, which has been observed earlier in experiments of dilute solutions. To verify further, the chain dynamics in shear flow using DPD simulations is studied. Specifically, the variation of the chain is analysed stretch and end-over-end tumbling with shear rates. Overall, the trends obtained from DPD simulations agree well with those observed in earlier BD simulations.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of DPD Simulations to Predict the Dynamics of Polymer Chains in Solutions at Equilibrium and Steady Shear Flows\",\"authors\":\"Praphul Kumar, Sanjay Jana, Hari Shyam, Indranil Saha Dalal\",\"doi\":\"10.1002/mats.202300045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The suitability of dissipative particle dynamics simulations is investigated to predict the dynamics of polymer chains in dilute polymer solutions. The authors find that the predictions depend on the value of the repulsive parameter for bead-bead pairwise interactions used in the DPD simulations (<i>a</i><sub><i>ij</i></sub>). For all systems, the chain sizes and the relaxation time spectrum are analyzed. For <i>a</i><sub><i>ij</i></sub> = 0, theta solvent behaviour is obtained, whereas the dynamics at equilibrium agrees well with the predictions of the Zimm model. For higher values of aij, the static properties of the chain show good solvent behaviour. However, the scaling laws for the chain dynamics at equilibrium show wide variations, with consistent results obtained only at an intermediate value of <i>a</i><sub><i>ij</i></sub> = 25. At higher values of the repulsive parameter (<i>a</i><sub><i>ij</i></sub> ⩾ 25), the simulations are also able to predict the abrupt cut-off in the relaxation spectrum, which has been observed earlier in experiments of dilute solutions. To verify further, the chain dynamics in shear flow using DPD simulations is studied. Specifically, the variation of the chain is analysed stretch and end-over-end tumbling with shear rates. Overall, the trends obtained from DPD simulations agree well with those observed in earlier BD simulations.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effectiveness of DPD Simulations to Predict the Dynamics of Polymer Chains in Solutions at Equilibrium and Steady Shear Flows
The suitability of dissipative particle dynamics simulations is investigated to predict the dynamics of polymer chains in dilute polymer solutions. The authors find that the predictions depend on the value of the repulsive parameter for bead-bead pairwise interactions used in the DPD simulations (aij). For all systems, the chain sizes and the relaxation time spectrum are analyzed. For aij = 0, theta solvent behaviour is obtained, whereas the dynamics at equilibrium agrees well with the predictions of the Zimm model. For higher values of aij, the static properties of the chain show good solvent behaviour. However, the scaling laws for the chain dynamics at equilibrium show wide variations, with consistent results obtained only at an intermediate value of aij = 25. At higher values of the repulsive parameter (aij ⩾ 25), the simulations are also able to predict the abrupt cut-off in the relaxation spectrum, which has been observed earlier in experiments of dilute solutions. To verify further, the chain dynamics in shear flow using DPD simulations is studied. Specifically, the variation of the chain is analysed stretch and end-over-end tumbling with shear rates. Overall, the trends obtained from DPD simulations agree well with those observed in earlier BD simulations.
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.