某混合无穷乘积的超越性质

IF 0.4 Q4 MATHEMATICS
E. Miyanohara
{"title":"某混合无穷乘积的超越性质","authors":"E. Miyanohara","doi":"10.7546/nntdm.2023.29.1.48-61","DOIUrl":null,"url":null,"abstract":"Let $k$ and $l$ be two multiplicatively independent positive integers and $b$ be an integer with $b\\ge2$. Let $S$ be a finite set of integers. Nishioka proved that for any algebraic number $\\alpha$ with $0<|\\alpha|<1$ the infinite products $\\prod_{y=0}^{\\infty}(1-{\\alpha}^{d^{y}})$ ($d=2,3,\\ldots$) are algebraically independent over $\\mathbb{Q}$. As her result, for example, the transcendence of $\\prod_{y=0}^{\\infty}(1-\\frac{1}{{b}^{2^{y}}})\\prod_{y=0}^{\\infty}(1-\\frac{1}{{b}^{3^{y}}})$ is deduced. On the other hand, Tachiya, Amou–Väänänen investigated the certain infinite products which satisfy infinite chains of Mahler functional equation. The special case of the result of Tachiya shows that the infinite product $\\prod_{y\\ge0}(1+\\sum_{i=1}^{k-1} \\frac{\\tau(i,y)}{b^{ik^y}})$ with $\\tau(i,y)\\in S$ ($1\\le i\\le k-1, y\\ge0$) is either rational or transcendental. In this paper, we prove that the infinite product $\\prod_{y\\ge0}(1+\\sum_{i=1}^{k-1} \\frac{\\tau(i,y)}{b^{ik^y}})\\prod_{y\\ge0}(1+\\sum_{j=1}^{l-1} \\frac{\\delta(j,y)}{b^{jl^y}})$ with $\\tau(i,y),\\delta(j,y) \\in S$ $(1\\le i\\le k-1, 1\\le j\\le l-1, y\\ge0)$ is either rational or transcendental. Moreover, we give sufficient conditions that $\\prod_{y\\ge0}(1+\\sum_{i=1}^{k-1} \\frac{\\tau(i,y)}{b^{ik^y}})\\prod_{y\\ge0}(1+\\sum_{j=1}^{l-1} \\frac{\\delta(j,y)}{b^{jl^y}})$ is transcendental.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcendental properties of the certain mix infinite products\",\"authors\":\"E. Miyanohara\",\"doi\":\"10.7546/nntdm.2023.29.1.48-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ and $l$ be two multiplicatively independent positive integers and $b$ be an integer with $b\\\\ge2$. Let $S$ be a finite set of integers. Nishioka proved that for any algebraic number $\\\\alpha$ with $0<|\\\\alpha|<1$ the infinite products $\\\\prod_{y=0}^{\\\\infty}(1-{\\\\alpha}^{d^{y}})$ ($d=2,3,\\\\ldots$) are algebraically independent over $\\\\mathbb{Q}$. As her result, for example, the transcendence of $\\\\prod_{y=0}^{\\\\infty}(1-\\\\frac{1}{{b}^{2^{y}}})\\\\prod_{y=0}^{\\\\infty}(1-\\\\frac{1}{{b}^{3^{y}}})$ is deduced. On the other hand, Tachiya, Amou–Väänänen investigated the certain infinite products which satisfy infinite chains of Mahler functional equation. The special case of the result of Tachiya shows that the infinite product $\\\\prod_{y\\\\ge0}(1+\\\\sum_{i=1}^{k-1} \\\\frac{\\\\tau(i,y)}{b^{ik^y}})$ with $\\\\tau(i,y)\\\\in S$ ($1\\\\le i\\\\le k-1, y\\\\ge0$) is either rational or transcendental. In this paper, we prove that the infinite product $\\\\prod_{y\\\\ge0}(1+\\\\sum_{i=1}^{k-1} \\\\frac{\\\\tau(i,y)}{b^{ik^y}})\\\\prod_{y\\\\ge0}(1+\\\\sum_{j=1}^{l-1} \\\\frac{\\\\delta(j,y)}{b^{jl^y}})$ with $\\\\tau(i,y),\\\\delta(j,y) \\\\in S$ $(1\\\\le i\\\\le k-1, 1\\\\le j\\\\le l-1, y\\\\ge0)$ is either rational or transcendental. Moreover, we give sufficient conditions that $\\\\prod_{y\\\\ge0}(1+\\\\sum_{i=1}^{k-1} \\\\frac{\\\\tau(i,y)}{b^{ik^y}})\\\\prod_{y\\\\ge0}(1+\\\\sum_{j=1}^{l-1} \\\\frac{\\\\delta(j,y)}{b^{jl^y}})$ is transcendental.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.1.48-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.1.48-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$k$和$l$是两个乘法独立的正整数,$b$是一个带有$b\ge2$的整数。设$S$是一组有限的整数。Nishioka证明了对于$0<|\alpha|<1$的任何代数数$\alpha$,无穷乘积$\prod_{y=0}^{infty}(1-{\alpha}^{d^{y}})$($d=2,3,\ldots$)在$\mathbb{Q}$上是代数独立的。作为她的结果,例如,推导出$\prod_{y=0}^{\infty}(1-\frac{1}{b}^}2^{y}})\prod_。另一方面,Tachiya,Amou–Väänänen研究了满足Mahler函数方程无穷链的某些无穷乘积。Tachiya结果的特例表明,S$($1\le i\le k-1,y\ge0$)中$\tau(i,y)\的无穷乘积$\prod_{y\ge0}(1+\sum_{i=1}^{k-1}\frac{\tau(i,y)}{b^{ik^y}})$要么是有理的,要么是超越的。本文证明了S$(1\le i\le-k-1,1\le j\le-1,y \ge0)$要么是理性的,要么是先验的。此外,我们给出了$\prod_{y\ge0}(1+\sum_{i=1}^{k-1}\frac{\tau(i,y)}{b^{ik^y}})\prod_(1+\ssum_{j=1}^{l-1}\ frac{\delta(j,y)}{b^{jl^ y})$是超越的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcendental properties of the certain mix infinite products
Let $k$ and $l$ be two multiplicatively independent positive integers and $b$ be an integer with $b\ge2$. Let $S$ be a finite set of integers. Nishioka proved that for any algebraic number $\alpha$ with $0<|\alpha|<1$ the infinite products $\prod_{y=0}^{\infty}(1-{\alpha}^{d^{y}})$ ($d=2,3,\ldots$) are algebraically independent over $\mathbb{Q}$. As her result, for example, the transcendence of $\prod_{y=0}^{\infty}(1-\frac{1}{{b}^{2^{y}}})\prod_{y=0}^{\infty}(1-\frac{1}{{b}^{3^{y}}})$ is deduced. On the other hand, Tachiya, Amou–Väänänen investigated the certain infinite products which satisfy infinite chains of Mahler functional equation. The special case of the result of Tachiya shows that the infinite product $\prod_{y\ge0}(1+\sum_{i=1}^{k-1} \frac{\tau(i,y)}{b^{ik^y}})$ with $\tau(i,y)\in S$ ($1\le i\le k-1, y\ge0$) is either rational or transcendental. In this paper, we prove that the infinite product $\prod_{y\ge0}(1+\sum_{i=1}^{k-1} \frac{\tau(i,y)}{b^{ik^y}})\prod_{y\ge0}(1+\sum_{j=1}^{l-1} \frac{\delta(j,y)}{b^{jl^y}})$ with $\tau(i,y),\delta(j,y) \in S$ $(1\le i\le k-1, 1\le j\le l-1, y\ge0)$ is either rational or transcendental. Moreover, we give sufficient conditions that $\prod_{y\ge0}(1+\sum_{i=1}^{k-1} \frac{\tau(i,y)}{b^{ik^y}})\prod_{y\ge0}(1+\sum_{j=1}^{l-1} \frac{\delta(j,y)}{b^{jl^y}})$ is transcendental.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信