{"title":"边缘断裂透视","authors":"S. T. Chan, S. Varchanis, S. Haward, A. Shen","doi":"10.1122/8.0000625","DOIUrl":null,"url":null,"abstract":"Edge fracture is a viscoelastic instability characterized by the sudden indentation of a fluid’s free surface when the fluid is subjected to a high enough shear rate. During shear rheometry, the fracture can invade the fluid sample, decreasing its contact area with the rheometer fixture and rendering the measurement of viscosity and normal stresses at high-shear rates invalid. Edge fracture can also induce apparent shear banding in the fluid, complicating the interpretation of experimental results. Over the past several decades, empirical and theoretical research has unraveled the physics underlying edge fracture. The knowledge obtained has allowed rheologists to develop techniques to minimize the adverse effect of fracture in their experiments. In recent years, edge fracture has also been used to break up viscoelastic liquid bridges quickly and cleanly, showing its potential to be adapted to the design of functional dispensing nozzles. This Perspective article aims to give a historical overview of edge fracture and suggests research directions to develop methods for suppressing or harnessing the phenomenon to benefit applications of both fundamental and technological importance.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perspective on edge fracture\",\"authors\":\"S. T. Chan, S. Varchanis, S. Haward, A. Shen\",\"doi\":\"10.1122/8.0000625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge fracture is a viscoelastic instability characterized by the sudden indentation of a fluid’s free surface when the fluid is subjected to a high enough shear rate. During shear rheometry, the fracture can invade the fluid sample, decreasing its contact area with the rheometer fixture and rendering the measurement of viscosity and normal stresses at high-shear rates invalid. Edge fracture can also induce apparent shear banding in the fluid, complicating the interpretation of experimental results. Over the past several decades, empirical and theoretical research has unraveled the physics underlying edge fracture. The knowledge obtained has allowed rheologists to develop techniques to minimize the adverse effect of fracture in their experiments. In recent years, edge fracture has also been used to break up viscoelastic liquid bridges quickly and cleanly, showing its potential to be adapted to the design of functional dispensing nozzles. This Perspective article aims to give a historical overview of edge fracture and suggests research directions to develop methods for suppressing or harnessing the phenomenon to benefit applications of both fundamental and technological importance.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000625\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000625","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Edge fracture is a viscoelastic instability characterized by the sudden indentation of a fluid’s free surface when the fluid is subjected to a high enough shear rate. During shear rheometry, the fracture can invade the fluid sample, decreasing its contact area with the rheometer fixture and rendering the measurement of viscosity and normal stresses at high-shear rates invalid. Edge fracture can also induce apparent shear banding in the fluid, complicating the interpretation of experimental results. Over the past several decades, empirical and theoretical research has unraveled the physics underlying edge fracture. The knowledge obtained has allowed rheologists to develop techniques to minimize the adverse effect of fracture in their experiments. In recent years, edge fracture has also been used to break up viscoelastic liquid bridges quickly and cleanly, showing its potential to be adapted to the design of functional dispensing nozzles. This Perspective article aims to give a historical overview of edge fracture and suggests research directions to develop methods for suppressing or harnessing the phenomenon to benefit applications of both fundamental and technological importance.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.