成年海七鳃鳗接近和通过米尔福德水坝鱼道,佩诺布斯科特河,缅因州,美国

IF 1.3 4区 农林科学 Q3 FISHERIES
E. Peterson, Rex Thors, D. Frechette, J. Zydlewski
{"title":"成年海七鳃鳗接近和通过米尔福德水坝鱼道,佩诺布斯科特河,缅因州,美国","authors":"E. Peterson, Rex Thors, D. Frechette, J. Zydlewski","doi":"10.1002/nafm.10919","DOIUrl":null,"url":null,"abstract":"Sea Lamprey Petromyzon marinus provide important ecological services within their native range, such as nutrient cycling, and can also act as a prey source for other species. Adult Sea Lamprey must access freshwater rivers to spawn, and because of this they are susceptible to changes in river connectivity. Human‐made structures, such as dams, can exclude them from usable habitat. Sea Lamprey dam passage has not been extensively studied in Maine, despite Maine being within the native range of this species. The goals of this study were to evaluate upstream passage efficiency at the Milford Dam on the Penobscot River, Maine, and to provide comprehensive information about adult Sea Lamprey passage at five other dams throughout the Penobscot River watershed.In 2020–2021 we captured and tagged 150 Sea Lamprey at the Milford Dam, the lowest dam in the Penobscot River, Maine, and displaced them downstream to assess passage efficiency at this dam and five upstream dams. In 2020, 50 Sea Lamprey were released on the east shore of the river downstream of Milford Dam; in 2021, the east shore release was repeated with an additional 50 fish and another 50 fish were released on the west shore.Between 70–82% of Sea Lamprey were observed passing Milford Dam again after mean delay times of 9–11 days. The release location did not affect dam passage success or the amount of time that was required to locate and use the passage structures. Sea Lampreys from both release groups were equally likely to approach the entrance to the fishway upon returning to Milford Dam, despite the fishway being located against the eastern shore of the river. However, high flows shortly after release may have resulted in higher attraction to the fishway in 2020. Passage success at dams upstream of Milford was highly variable. All Sea Lamprey were able to successfully navigate past West Enfield Dam (100% passage, n = 63), whereas Brownsmill Dam apparently acted as a complete barrier to further migration (0% passage, n = 7). Fish from all years and release groups together had a median upstream migration distance of 38.8 km after fish had passed Milford Dam, and a maximum observed upstream travel distance of approximately 100 km, indicating that most tagged Sea Lamprey ended their migration in the vicinity of a dam.The results of this study indicate that Sea Lamprey have high passage efficiency at the Milford Dam and highlight areas within the Penobscot River basin—such as the Brownsmill Dam—where passage facilities are currently inadequate for Sea Lamprey.","PeriodicalId":19263,"journal":{"name":"North American Journal of Fisheries Management","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adult Sea Lamprey approach and passage at the Milford Dam fishway, Penobscot River, Maine, United States\",\"authors\":\"E. Peterson, Rex Thors, D. Frechette, J. Zydlewski\",\"doi\":\"10.1002/nafm.10919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea Lamprey Petromyzon marinus provide important ecological services within their native range, such as nutrient cycling, and can also act as a prey source for other species. Adult Sea Lamprey must access freshwater rivers to spawn, and because of this they are susceptible to changes in river connectivity. Human‐made structures, such as dams, can exclude them from usable habitat. Sea Lamprey dam passage has not been extensively studied in Maine, despite Maine being within the native range of this species. The goals of this study were to evaluate upstream passage efficiency at the Milford Dam on the Penobscot River, Maine, and to provide comprehensive information about adult Sea Lamprey passage at five other dams throughout the Penobscot River watershed.In 2020–2021 we captured and tagged 150 Sea Lamprey at the Milford Dam, the lowest dam in the Penobscot River, Maine, and displaced them downstream to assess passage efficiency at this dam and five upstream dams. In 2020, 50 Sea Lamprey were released on the east shore of the river downstream of Milford Dam; in 2021, the east shore release was repeated with an additional 50 fish and another 50 fish were released on the west shore.Between 70–82% of Sea Lamprey were observed passing Milford Dam again after mean delay times of 9–11 days. The release location did not affect dam passage success or the amount of time that was required to locate and use the passage structures. Sea Lampreys from both release groups were equally likely to approach the entrance to the fishway upon returning to Milford Dam, despite the fishway being located against the eastern shore of the river. However, high flows shortly after release may have resulted in higher attraction to the fishway in 2020. Passage success at dams upstream of Milford was highly variable. All Sea Lamprey were able to successfully navigate past West Enfield Dam (100% passage, n = 63), whereas Brownsmill Dam apparently acted as a complete barrier to further migration (0% passage, n = 7). Fish from all years and release groups together had a median upstream migration distance of 38.8 km after fish had passed Milford Dam, and a maximum observed upstream travel distance of approximately 100 km, indicating that most tagged Sea Lamprey ended their migration in the vicinity of a dam.The results of this study indicate that Sea Lamprey have high passage efficiency at the Milford Dam and highlight areas within the Penobscot River basin—such as the Brownsmill Dam—where passage facilities are currently inadequate for Sea Lamprey.\",\"PeriodicalId\":19263,\"journal\":{\"name\":\"North American Journal of Fisheries Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Journal of Fisheries Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/nafm.10919\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Journal of Fisheries Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/nafm.10919","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

海鳗在其原生范围内提供重要的生态服务,如营养循环,也可以作为其他物种的猎物来源。成年海鳗必须进入淡水河才能产卵,因此它们很容易受到河流连通性变化的影响。人造结构,如水坝,可能会将它们排除在可用的栖息地之外。尽管缅因州属于该物种的原生范围,但缅因州并没有对海鳗水坝通道进行广泛研究。本研究的目的是评估缅因州佩诺布斯科特河米尔福德大坝的上游通行效率,并提供关于佩诺布科特河流域其他五座大坝成年海鳗通行的全面信息。2020-2021年,我们在缅因州佩诺布斯科特河最低的米尔福德大坝捕获并标记了150只海鳗,并将它们转移到下游,以评估该大坝和上游五座大坝的通行效率。2020年,米尔福德大坝下游的河流东岸释放了50只海鳗;2021年,东岸再次放生50条鱼,西岸又放生了50条鱼。在平均延迟时间为9–11之后,观察到70%至82%的海鳗再次通过米尔福德大坝 天。泄流位置不影响大坝通过的成功率,也不影响确定和使用通道结构所需的时间。尽管鱼道位于河流东岸,但两个放流组的海鳗在返回米尔福德大坝时同样有可能接近鱼道入口。然而,释放后不久的高流量可能导致2020年对鱼道的吸引力更大。米尔福德上游大坝的通行成功率变化很大。所有Sea Lamprey都能够成功地通过西恩菲尔德大坝(100%通过,n = 63),而Brownsmill大坝显然是进一步迁徙的完全屏障(0%通过,n = 7) 。所有年份和放流组的鱼类在通过米尔福德大坝后的上游迁徙距离中值为38.8公里,观测到的最大上游迁徙距离约为100公里,这表明大多数被标记的海鳗在大坝附近结束了迁徙。这项研究的结果表明,Sea Lamprey在米尔福德大坝的通行效率很高,并突出了佩诺布斯科特河流域内的一些地区,如Brownsmill大坝,这些地区的通行设施目前不足以满足Sea Lampley的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adult Sea Lamprey approach and passage at the Milford Dam fishway, Penobscot River, Maine, United States
Sea Lamprey Petromyzon marinus provide important ecological services within their native range, such as nutrient cycling, and can also act as a prey source for other species. Adult Sea Lamprey must access freshwater rivers to spawn, and because of this they are susceptible to changes in river connectivity. Human‐made structures, such as dams, can exclude them from usable habitat. Sea Lamprey dam passage has not been extensively studied in Maine, despite Maine being within the native range of this species. The goals of this study were to evaluate upstream passage efficiency at the Milford Dam on the Penobscot River, Maine, and to provide comprehensive information about adult Sea Lamprey passage at five other dams throughout the Penobscot River watershed.In 2020–2021 we captured and tagged 150 Sea Lamprey at the Milford Dam, the lowest dam in the Penobscot River, Maine, and displaced them downstream to assess passage efficiency at this dam and five upstream dams. In 2020, 50 Sea Lamprey were released on the east shore of the river downstream of Milford Dam; in 2021, the east shore release was repeated with an additional 50 fish and another 50 fish were released on the west shore.Between 70–82% of Sea Lamprey were observed passing Milford Dam again after mean delay times of 9–11 days. The release location did not affect dam passage success or the amount of time that was required to locate and use the passage structures. Sea Lampreys from both release groups were equally likely to approach the entrance to the fishway upon returning to Milford Dam, despite the fishway being located against the eastern shore of the river. However, high flows shortly after release may have resulted in higher attraction to the fishway in 2020. Passage success at dams upstream of Milford was highly variable. All Sea Lamprey were able to successfully navigate past West Enfield Dam (100% passage, n = 63), whereas Brownsmill Dam apparently acted as a complete barrier to further migration (0% passage, n = 7). Fish from all years and release groups together had a median upstream migration distance of 38.8 km after fish had passed Milford Dam, and a maximum observed upstream travel distance of approximately 100 km, indicating that most tagged Sea Lamprey ended their migration in the vicinity of a dam.The results of this study indicate that Sea Lamprey have high passage efficiency at the Milford Dam and highlight areas within the Penobscot River basin—such as the Brownsmill Dam—where passage facilities are currently inadequate for Sea Lamprey.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
18.20%
发文量
118
审稿时长
2 months
期刊介绍: The North American Journal of Fisheries Management promotes communication among fishery managers with an emphasis on North America, and addresses the maintenance, enhancement, and allocation of fisheries resources. It chronicles the development of practical monitoring and management programs for finfish and exploitable shellfish in marine and freshwater environments. Contributions relate to the management of fish populations, habitats, and users to protect and enhance fish and fishery resources for societal benefits. Case histories of successes, failures, and effects of fisheries programs help convey practical management experience to others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信