{"title":"泛配置的非阿基米德Banach空间","authors":"A. Kubzdela, C. Perez-Garcia","doi":"10.1007/s10476-023-0214-6","DOIUrl":null,"url":null,"abstract":"<div><p>A space of universal disposition is a Banach space which has certain natural extension properties for isometric embeddings of Banach spaces belonging to a specific class. We study spaces of universal disposition for non-archimedean Banach spaces. In particular, we introduce the classification of non-archimedean Banach spaces depending on the cardinality of maximal orthogonal sets, which can be viewed as a kind of special density and characterize spaces of universal disposition for each distinguished class.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0214-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-archimedean Banach spaces of universal disposition\",\"authors\":\"A. Kubzdela, C. Perez-Garcia\",\"doi\":\"10.1007/s10476-023-0214-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A space of universal disposition is a Banach space which has certain natural extension properties for isometric embeddings of Banach spaces belonging to a specific class. We study spaces of universal disposition for non-archimedean Banach spaces. In particular, we introduce the classification of non-archimedean Banach spaces depending on the cardinality of maximal orthogonal sets, which can be viewed as a kind of special density and characterize spaces of universal disposition for each distinguished class.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0214-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0214-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0214-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-archimedean Banach spaces of universal disposition
A space of universal disposition is a Banach space which has certain natural extension properties for isometric embeddings of Banach spaces belonging to a specific class. We study spaces of universal disposition for non-archimedean Banach spaces. In particular, we introduce the classification of non-archimedean Banach spaces depending on the cardinality of maximal orthogonal sets, which can be viewed as a kind of special density and characterize spaces of universal disposition for each distinguished class.