{"title":"Ti_4O_7在高性能锂硫电池硫和石墨烯硫阴极中的导电添加剂的简易制备方法","authors":"Chun-Wei yu, Cho-Jen Tsai","doi":"10.1557/s43581-022-00052-w","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur batteries have significant potential to be applied in next-generation energy storage systems. However, polysulfide dissolution and redeposition have contributed to poor cycling stability, low sulfur utilization, and poor rate performance, thereby limiting their practical applications. Herein, we used a sol-gel method to fabricate a Ti_4O_7 conductive metal oxide, which was partially added to a Lithium-sulfur battery cathode. The results demonstrated that the addition of 7.5 wt% to 10 wt% Ti_4O_7 as the conductive additive resulted in a better rate capability and reversible cycling performance owing to its high electronic conductivity and surface adsorption of polysulfides. Compared to complex architectures and complicated synthesis methods, we report a more effective way to overcome the drawbacks of Lithium-sulfur batteries. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ti_4O_7 as conductive additive in sulfur and graphene-sulfur cathodes for high-performance Lithium-sulfur batteries with a facile preparation method\",\"authors\":\"Chun-Wei yu, Cho-Jen Tsai\",\"doi\":\"10.1557/s43581-022-00052-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-sulfur batteries have significant potential to be applied in next-generation energy storage systems. However, polysulfide dissolution and redeposition have contributed to poor cycling stability, low sulfur utilization, and poor rate performance, thereby limiting their practical applications. Herein, we used a sol-gel method to fabricate a Ti_4O_7 conductive metal oxide, which was partially added to a Lithium-sulfur battery cathode. The results demonstrated that the addition of 7.5 wt% to 10 wt% Ti_4O_7 as the conductive additive resulted in a better rate capability and reversible cycling performance owing to its high electronic conductivity and surface adsorption of polysulfides. Compared to complex architectures and complicated synthesis methods, we report a more effective way to overcome the drawbacks of Lithium-sulfur batteries. Graphical abstract\",\"PeriodicalId\":44802,\"journal\":{\"name\":\"MRS Energy & Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Energy & Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/s43581-022-00052-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-022-00052-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ti_4O_7 as conductive additive in sulfur and graphene-sulfur cathodes for high-performance Lithium-sulfur batteries with a facile preparation method
Lithium-sulfur batteries have significant potential to be applied in next-generation energy storage systems. However, polysulfide dissolution and redeposition have contributed to poor cycling stability, low sulfur utilization, and poor rate performance, thereby limiting their practical applications. Herein, we used a sol-gel method to fabricate a Ti_4O_7 conductive metal oxide, which was partially added to a Lithium-sulfur battery cathode. The results demonstrated that the addition of 7.5 wt% to 10 wt% Ti_4O_7 as the conductive additive resulted in a better rate capability and reversible cycling performance owing to its high electronic conductivity and surface adsorption of polysulfides. Compared to complex architectures and complicated synthesis methods, we report a more effective way to overcome the drawbacks of Lithium-sulfur batteries. Graphical abstract