{"title":"从厌氧菌到不耐受空气的原核生物","authors":"Sokhna Ndongo , Saber Khelaifia , Jean-Christophe Lagier , Didier Raoult","doi":"10.1016/j.humic.2019.100068","DOIUrl":null,"url":null,"abstract":"<div><p>An increasing number of scientists are turning to the microbiota to understand and/or explain the origin of various human metabolic or inflammatory diseases. Oxygen-intolerant bacteria represent the major population of the human intestinal microbiota. Their isolation is often difficult or even fastidious. The number of studies showing their beneficial role in human health is growing exponentially. <em>Faecalibacterium prausnitzii</em> and <em>Akkermansia muciniphila</em> are abundantly represented in healthy intestinal microbiota and their imbalance is positively correlated with inflammatory diseases and metabolic disorders (obesity, diabetes, cancers). Their use as probiotics presents very promising results in restoring the balance of microbial flora but also in the treatment of certain pathological conditions. The Christensenellaceae family has recently emerged as a hereditary taxon and studies have shown that its abundance is positively correlated with leanness and controls obesity in recipient mice. Here, we report the different culture strategies and techniques used for their isolation; the role of antioxidants in the survival of these oxygen-sensitive species in clinical sample and their maintenance in culture isolates.</p></div>","PeriodicalId":37790,"journal":{"name":"Human Microbiome Journal","volume":"15 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.humic.2019.100068","citationCount":"7","resultStr":"{\"title\":\"From anaerobes to aerointolerant prokaryotes\",\"authors\":\"Sokhna Ndongo , Saber Khelaifia , Jean-Christophe Lagier , Didier Raoult\",\"doi\":\"10.1016/j.humic.2019.100068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An increasing number of scientists are turning to the microbiota to understand and/or explain the origin of various human metabolic or inflammatory diseases. Oxygen-intolerant bacteria represent the major population of the human intestinal microbiota. Their isolation is often difficult or even fastidious. The number of studies showing their beneficial role in human health is growing exponentially. <em>Faecalibacterium prausnitzii</em> and <em>Akkermansia muciniphila</em> are abundantly represented in healthy intestinal microbiota and their imbalance is positively correlated with inflammatory diseases and metabolic disorders (obesity, diabetes, cancers). Their use as probiotics presents very promising results in restoring the balance of microbial flora but also in the treatment of certain pathological conditions. The Christensenellaceae family has recently emerged as a hereditary taxon and studies have shown that its abundance is positively correlated with leanness and controls obesity in recipient mice. Here, we report the different culture strategies and techniques used for their isolation; the role of antioxidants in the survival of these oxygen-sensitive species in clinical sample and their maintenance in culture isolates.</p></div>\",\"PeriodicalId\":37790,\"journal\":{\"name\":\"Human Microbiome Journal\",\"volume\":\"15 \",\"pages\":\"Article 100068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.humic.2019.100068\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Microbiome Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245223171930017X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Microbiome Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245223171930017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
An increasing number of scientists are turning to the microbiota to understand and/or explain the origin of various human metabolic or inflammatory diseases. Oxygen-intolerant bacteria represent the major population of the human intestinal microbiota. Their isolation is often difficult or even fastidious. The number of studies showing their beneficial role in human health is growing exponentially. Faecalibacterium prausnitzii and Akkermansia muciniphila are abundantly represented in healthy intestinal microbiota and their imbalance is positively correlated with inflammatory diseases and metabolic disorders (obesity, diabetes, cancers). Their use as probiotics presents very promising results in restoring the balance of microbial flora but also in the treatment of certain pathological conditions. The Christensenellaceae family has recently emerged as a hereditary taxon and studies have shown that its abundance is positively correlated with leanness and controls obesity in recipient mice. Here, we report the different culture strategies and techniques used for their isolation; the role of antioxidants in the survival of these oxygen-sensitive species in clinical sample and their maintenance in culture isolates.
期刊介绍:
The innumerable microbes living in and on our bodies are known to affect human wellbeing, but our knowledge of their role is still at the very early stages of understanding. Human Microbiome is a new open access journal dedicated to research on the impact of the microbiome on human health and disease. The journal will publish original research, reviews, comments, human microbe descriptions and genome, and letters. Topics covered will include: the repertoire of human-associated microbes, therapeutic intervention, pathophysiology, experimental models, physiological, geographical, and pathological changes, and technical reports; genomic, metabolomic, transcriptomic, and culturomic approaches are welcome.