考虑无质量力学特性的外载荷主应力预测

A. Lunev, R. S. Katsarskiy
{"title":"考虑无质量力学特性的外载荷主应力预测","authors":"A. Lunev, R. S. Katsarskiy","doi":"10.26518/2071-7296-2022-19-5-738-751","DOIUrl":null,"url":null,"abstract":"Introduction. A part of the methods for designing earthworks and foundations is based on solutions for predicting the stress state of soils under the action of an external load, which do not take into account the structural features of the material. This is in conflict with current studies, which indicate that changes in the moisture content, density, and shape of material particles entail changes in the mechanism of stress state formation. According to some research, when the type of soil, moisture content and density of the mass change, both its mechanical characteristics and the stress state change, which requires consideration in the design of earthworks and building foundations.The method of research. To study the stress state arising in sandy soil with different mechanical characteristics, experimental studies were carried out to determine the pressures in sand of different density and moisture under the action of an external load from a round stamp with an area of 500 cm2. To do this, at a depth of 5, 15, 25, 40 cm along the axis of a round stamp in an array of sand of medium size, mesdoses were set, after which the pressures were measured when the load was applied. For each value of density and moisture created during the experiment, the mechanical characteristics of the sandy soil were determined.Results. The analysis of the existing dependencies for predicting the maximum principal stresses showed that the Kandaurov and Frohlich’s solutions are the only ones that give a connection between the formation of the stress state and mechanical characteristics and allow predicting the minimum principal stresses. The influence of the mechanical characteristics of sandy soil (the angle of internal friction and the modulus of elasticity at different density and humidity) on the Frohlich’s parameter and the distribution capacity coefficient of the medium of the Kandaurov’s solution was established.Conclusion. The analysis of the results of experimental studies made it possible to derive dependencies for predicting the maximum principal stresses of sandy soil at points located at different depths along the axis of a loaded round stamp. The proposed dependencies are a modification of Kandaurov and Frohlich’s solutions, which take into account the relationship between the mechanical characteristics of sandy soil and the parameters of the distribution capacity of the medium.","PeriodicalId":32892,"journal":{"name":"Vestnik SibADI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of principal stresses due to external load in sans mass considering its mechanical characteristics\",\"authors\":\"A. Lunev, R. S. Katsarskiy\",\"doi\":\"10.26518/2071-7296-2022-19-5-738-751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. A part of the methods for designing earthworks and foundations is based on solutions for predicting the stress state of soils under the action of an external load, which do not take into account the structural features of the material. This is in conflict with current studies, which indicate that changes in the moisture content, density, and shape of material particles entail changes in the mechanism of stress state formation. According to some research, when the type of soil, moisture content and density of the mass change, both its mechanical characteristics and the stress state change, which requires consideration in the design of earthworks and building foundations.The method of research. To study the stress state arising in sandy soil with different mechanical characteristics, experimental studies were carried out to determine the pressures in sand of different density and moisture under the action of an external load from a round stamp with an area of 500 cm2. To do this, at a depth of 5, 15, 25, 40 cm along the axis of a round stamp in an array of sand of medium size, mesdoses were set, after which the pressures were measured when the load was applied. For each value of density and moisture created during the experiment, the mechanical characteristics of the sandy soil were determined.Results. The analysis of the existing dependencies for predicting the maximum principal stresses showed that the Kandaurov and Frohlich’s solutions are the only ones that give a connection between the formation of the stress state and mechanical characteristics and allow predicting the minimum principal stresses. The influence of the mechanical characteristics of sandy soil (the angle of internal friction and the modulus of elasticity at different density and humidity) on the Frohlich’s parameter and the distribution capacity coefficient of the medium of the Kandaurov’s solution was established.Conclusion. The analysis of the results of experimental studies made it possible to derive dependencies for predicting the maximum principal stresses of sandy soil at points located at different depths along the axis of a loaded round stamp. The proposed dependencies are a modification of Kandaurov and Frohlich’s solutions, which take into account the relationship between the mechanical characteristics of sandy soil and the parameters of the distribution capacity of the medium.\",\"PeriodicalId\":32892,\"journal\":{\"name\":\"Vestnik SibADI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik SibADI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26518/2071-7296-2022-19-5-738-751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik SibADI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26518/2071-7296-2022-19-5-738-751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍土方工程和基础设计方法的一部分是基于预测外部荷载作用下土壤应力状态的解决方案,而不考虑材料的结构特征。这与目前的研究相冲突,目前的研究表明,材料颗粒的含水量、密度和形状的变化会导致应力状态形成机制的变化。根据一些研究,当土壤类型、含水量和质量密度发生变化时,其力学特性和应力状态都会发生变化,这需要在土方工程和建筑基础的设计中加以考虑。研究方法。为了研究具有不同力学特性的砂土中产生的应力状态,进行了实验研究,以确定在面积为500cm2的圆形印模的外部载荷作用下,不同密度和湿度的砂土中的压力。为了做到这一点,在沿着中等尺寸的沙子阵列中的圆形印模的轴线的5、15、25、40cm的深度处,设置中间剂量,之后在施加载荷时测量压力。对于实验过程中产生的每一个密度和湿度值,都要确定沙质土壤的力学特性。后果对预测最大主应力的现有相关性的分析表明,Kandaurov和Frohlich的解决方案是唯一在应力状态的形成和机械特性之间给出联系并允许预测最小主应力。建立了砂土的力学特性(不同密度和湿度下的内摩擦角和弹性模量)对Frohlich参数和Kandaurov溶液介质的分配容量系数的影响。结论通过对实验研究结果的分析,可以推导出预测砂土在沿加载圆形印模轴的不同深度处的最大主应力的相关性。所提出的依赖关系是对Kandaurov和Frohlich解的修改,考虑了砂土的力学特性与介质分布能力参数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of principal stresses due to external load in sans mass considering its mechanical characteristics
Introduction. A part of the methods for designing earthworks and foundations is based on solutions for predicting the stress state of soils under the action of an external load, which do not take into account the structural features of the material. This is in conflict with current studies, which indicate that changes in the moisture content, density, and shape of material particles entail changes in the mechanism of stress state formation. According to some research, when the type of soil, moisture content and density of the mass change, both its mechanical characteristics and the stress state change, which requires consideration in the design of earthworks and building foundations.The method of research. To study the stress state arising in sandy soil with different mechanical characteristics, experimental studies were carried out to determine the pressures in sand of different density and moisture under the action of an external load from a round stamp with an area of 500 cm2. To do this, at a depth of 5, 15, 25, 40 cm along the axis of a round stamp in an array of sand of medium size, mesdoses were set, after which the pressures were measured when the load was applied. For each value of density and moisture created during the experiment, the mechanical characteristics of the sandy soil were determined.Results. The analysis of the existing dependencies for predicting the maximum principal stresses showed that the Kandaurov and Frohlich’s solutions are the only ones that give a connection between the formation of the stress state and mechanical characteristics and allow predicting the minimum principal stresses. The influence of the mechanical characteristics of sandy soil (the angle of internal friction and the modulus of elasticity at different density and humidity) on the Frohlich’s parameter and the distribution capacity coefficient of the medium of the Kandaurov’s solution was established.Conclusion. The analysis of the results of experimental studies made it possible to derive dependencies for predicting the maximum principal stresses of sandy soil at points located at different depths along the axis of a loaded round stamp. The proposed dependencies are a modification of Kandaurov and Frohlich’s solutions, which take into account the relationship between the mechanical characteristics of sandy soil and the parameters of the distribution capacity of the medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信