{"title":"解析函数和加权积分算子子类上卷积的对偶性","authors":"E. Amini, M. Fardi, S. Al-Omari, K. Nonlaopon","doi":"10.1515/dema-2022-0168","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we investigate a class of analytic functions defined on the unit open disc U = { z : ∣ z ∣ < 1 } {\\mathcal{U}}=\\left\\{z:| z| \\lt 1\\right\\} , such that for every f ∈ P α ( β , γ ) f\\in {{\\mathcal{P}}}_{\\alpha }\\left(\\beta ,\\gamma ) , α > 0 \\alpha \\gt 0 , 0 ≤ β ≤ 1 0\\le \\beta \\le 1 , 0 < γ ≤ 1 0\\lt \\gamma \\le 1 , and ∣ z ∣ < 1 | z| \\lt 1 , the inequality Re f ′ ( z ) + 1 − γ α γ z f ″ ( z ) − β 1 − β > 0 {\\rm{Re}}\\left\\{\\frac{f^{\\prime} \\left(z)+\\frac{1-\\gamma }{\\alpha \\gamma }z{f}^{^{\\prime\\prime} }\\left(z)-\\beta }{1-\\beta }\\right\\}\\gt 0 holds. We find conditions on the numbers α , β \\alpha ,\\beta , and γ \\gamma such that P α ( β , γ ) ⊆ S P ( λ ) {{\\mathcal{P}}}_{\\alpha }\\left(\\beta ,\\gamma )\\subseteq SP\\left(\\lambda ) , for λ ∈ ( − π 2 , π 2 ) \\lambda \\in \\left(-\\frac{\\pi }{2},\\frac{\\pi }{2}) , where S P ( λ ) SP\\left(\\lambda ) denotes the set of all λ \\lambda -spirallike functions. We also make use of Ruscheweyh’s duality theory to derive conditions on the numbers α , β , γ \\alpha ,\\beta ,\\gamma and the real-valued function φ \\varphi so that the integral operator V φ ( f ) {V}_{\\varphi }(f) maps the set P α ( β , γ ) {{\\mathcal{P}}}_{\\alpha }\\left(\\beta ,\\gamma ) into the set S P ( λ ) SP\\left(\\lambda ) , provided φ \\varphi is non-negative normalized function ( ∫ 0 1 φ ( t ) d t = 1 ) \\left({\\int }_{0}^{1}\\varphi \\left(t){\\rm{d}}t=1) and V φ ( f ) ( z ) = ∫ 0 1 φ ( t ) f ( t z ) t d t . {V}_{\\varphi }(f)\\left(z)=\\underset{0}{\\overset{1}{\\int }}\\varphi \\left(t)\\frac{f\\left(tz)}{t}{\\rm{d}}t.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Duality for convolution on subclasses of analytic functions and weighted integral operators\",\"authors\":\"E. Amini, M. Fardi, S. Al-Omari, K. Nonlaopon\",\"doi\":\"10.1515/dema-2022-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we investigate a class of analytic functions defined on the unit open disc U = { z : ∣ z ∣ < 1 } {\\\\mathcal{U}}=\\\\left\\\\{z:| z| \\\\lt 1\\\\right\\\\} , such that for every f ∈ P α ( β , γ ) f\\\\in {{\\\\mathcal{P}}}_{\\\\alpha }\\\\left(\\\\beta ,\\\\gamma ) , α > 0 \\\\alpha \\\\gt 0 , 0 ≤ β ≤ 1 0\\\\le \\\\beta \\\\le 1 , 0 < γ ≤ 1 0\\\\lt \\\\gamma \\\\le 1 , and ∣ z ∣ < 1 | z| \\\\lt 1 , the inequality Re f ′ ( z ) + 1 − γ α γ z f ″ ( z ) − β 1 − β > 0 {\\\\rm{Re}}\\\\left\\\\{\\\\frac{f^{\\\\prime} \\\\left(z)+\\\\frac{1-\\\\gamma }{\\\\alpha \\\\gamma }z{f}^{^{\\\\prime\\\\prime} }\\\\left(z)-\\\\beta }{1-\\\\beta }\\\\right\\\\}\\\\gt 0 holds. We find conditions on the numbers α , β \\\\alpha ,\\\\beta , and γ \\\\gamma such that P α ( β , γ ) ⊆ S P ( λ ) {{\\\\mathcal{P}}}_{\\\\alpha }\\\\left(\\\\beta ,\\\\gamma )\\\\subseteq SP\\\\left(\\\\lambda ) , for λ ∈ ( − π 2 , π 2 ) \\\\lambda \\\\in \\\\left(-\\\\frac{\\\\pi }{2},\\\\frac{\\\\pi }{2}) , where S P ( λ ) SP\\\\left(\\\\lambda ) denotes the set of all λ \\\\lambda -spirallike functions. We also make use of Ruscheweyh’s duality theory to derive conditions on the numbers α , β , γ \\\\alpha ,\\\\beta ,\\\\gamma and the real-valued function φ \\\\varphi so that the integral operator V φ ( f ) {V}_{\\\\varphi }(f) maps the set P α ( β , γ ) {{\\\\mathcal{P}}}_{\\\\alpha }\\\\left(\\\\beta ,\\\\gamma ) into the set S P ( λ ) SP\\\\left(\\\\lambda ) , provided φ \\\\varphi is non-negative normalized function ( ∫ 0 1 φ ( t ) d t = 1 ) \\\\left({\\\\int }_{0}^{1}\\\\varphi \\\\left(t){\\\\rm{d}}t=1) and V φ ( f ) ( z ) = ∫ 0 1 φ ( t ) f ( t z ) t d t . {V}_{\\\\varphi }(f)\\\\left(z)=\\\\underset{0}{\\\\overset{1}{\\\\int }}\\\\varphi \\\\left(t)\\\\frac{f\\\\left(tz)}{t}{\\\\rm{d}}t.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0168\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0168","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Duality for convolution on subclasses of analytic functions and weighted integral operators
Abstract In this article, we investigate a class of analytic functions defined on the unit open disc U = { z : ∣ z ∣ < 1 } {\mathcal{U}}=\left\{z:| z| \lt 1\right\} , such that for every f ∈ P α ( β , γ ) f\in {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma ) , α > 0 \alpha \gt 0 , 0 ≤ β ≤ 1 0\le \beta \le 1 , 0 < γ ≤ 1 0\lt \gamma \le 1 , and ∣ z ∣ < 1 | z| \lt 1 , the inequality Re f ′ ( z ) + 1 − γ α γ z f ″ ( z ) − β 1 − β > 0 {\rm{Re}}\left\{\frac{f^{\prime} \left(z)+\frac{1-\gamma }{\alpha \gamma }z{f}^{^{\prime\prime} }\left(z)-\beta }{1-\beta }\right\}\gt 0 holds. We find conditions on the numbers α , β \alpha ,\beta , and γ \gamma such that P α ( β , γ ) ⊆ S P ( λ ) {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma )\subseteq SP\left(\lambda ) , for λ ∈ ( − π 2 , π 2 ) \lambda \in \left(-\frac{\pi }{2},\frac{\pi }{2}) , where S P ( λ ) SP\left(\lambda ) denotes the set of all λ \lambda -spirallike functions. We also make use of Ruscheweyh’s duality theory to derive conditions on the numbers α , β , γ \alpha ,\beta ,\gamma and the real-valued function φ \varphi so that the integral operator V φ ( f ) {V}_{\varphi }(f) maps the set P α ( β , γ ) {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma ) into the set S P ( λ ) SP\left(\lambda ) , provided φ \varphi is non-negative normalized function ( ∫ 0 1 φ ( t ) d t = 1 ) \left({\int }_{0}^{1}\varphi \left(t){\rm{d}}t=1) and V φ ( f ) ( z ) = ∫ 0 1 φ ( t ) f ( t z ) t d t . {V}_{\varphi }(f)\left(z)=\underset{0}{\overset{1}{\int }}\varphi \left(t)\frac{f\left(tz)}{t}{\rm{d}}t.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.