解析函数和加权积分算子子类上卷积的对偶性

IF 2 3区 数学 Q1 MATHEMATICS
E. Amini, M. Fardi, S. Al-Omari, K. Nonlaopon
{"title":"解析函数和加权积分算子子类上卷积的对偶性","authors":"E. Amini, M. Fardi, S. Al-Omari, K. Nonlaopon","doi":"10.1515/dema-2022-0168","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we investigate a class of analytic functions defined on the unit open disc U = { z : ∣ z ∣ < 1 } {\\mathcal{U}}=\\left\\{z:| z| \\lt 1\\right\\} , such that for every f ∈ P α ( β , γ ) f\\in {{\\mathcal{P}}}_{\\alpha }\\left(\\beta ,\\gamma ) , α > 0 \\alpha \\gt 0 , 0 ≤ β ≤ 1 0\\le \\beta \\le 1 , 0 < γ ≤ 1 0\\lt \\gamma \\le 1 , and ∣ z ∣ < 1 | z| \\lt 1 , the inequality Re f ′ ( z ) + 1 − γ α γ z f ″ ( z ) − β 1 − β > 0 {\\rm{Re}}\\left\\{\\frac{f^{\\prime} \\left(z)+\\frac{1-\\gamma }{\\alpha \\gamma }z{f}^{^{\\prime\\prime} }\\left(z)-\\beta }{1-\\beta }\\right\\}\\gt 0 holds. We find conditions on the numbers α , β \\alpha ,\\beta , and γ \\gamma such that P α ( β , γ ) ⊆ S P ( λ ) {{\\mathcal{P}}}_{\\alpha }\\left(\\beta ,\\gamma )\\subseteq SP\\left(\\lambda ) , for λ ∈ ( − π 2 , π 2 ) \\lambda \\in \\left(-\\frac{\\pi }{2},\\frac{\\pi }{2}) , where S P ( λ ) SP\\left(\\lambda ) denotes the set of all λ \\lambda -spirallike functions. We also make use of Ruscheweyh’s duality theory to derive conditions on the numbers α , β , γ \\alpha ,\\beta ,\\gamma and the real-valued function φ \\varphi so that the integral operator V φ ( f ) {V}_{\\varphi }(f) maps the set P α ( β , γ ) {{\\mathcal{P}}}_{\\alpha }\\left(\\beta ,\\gamma ) into the set S P ( λ ) SP\\left(\\lambda ) , provided φ \\varphi is non-negative normalized function ( ∫ 0 1 φ ( t ) d t = 1 ) \\left({\\int }_{0}^{1}\\varphi \\left(t){\\rm{d}}t=1) and V φ ( f ) ( z ) = ∫ 0 1 φ ( t ) f ( t z ) t d t . {V}_{\\varphi }(f)\\left(z)=\\underset{0}{\\overset{1}{\\int }}\\varphi \\left(t)\\frac{f\\left(tz)}{t}{\\rm{d}}t.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Duality for convolution on subclasses of analytic functions and weighted integral operators\",\"authors\":\"E. Amini, M. Fardi, S. Al-Omari, K. Nonlaopon\",\"doi\":\"10.1515/dema-2022-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we investigate a class of analytic functions defined on the unit open disc U = { z : ∣ z ∣ < 1 } {\\\\mathcal{U}}=\\\\left\\\\{z:| z| \\\\lt 1\\\\right\\\\} , such that for every f ∈ P α ( β , γ ) f\\\\in {{\\\\mathcal{P}}}_{\\\\alpha }\\\\left(\\\\beta ,\\\\gamma ) , α > 0 \\\\alpha \\\\gt 0 , 0 ≤ β ≤ 1 0\\\\le \\\\beta \\\\le 1 , 0 < γ ≤ 1 0\\\\lt \\\\gamma \\\\le 1 , and ∣ z ∣ < 1 | z| \\\\lt 1 , the inequality Re f ′ ( z ) + 1 − γ α γ z f ″ ( z ) − β 1 − β > 0 {\\\\rm{Re}}\\\\left\\\\{\\\\frac{f^{\\\\prime} \\\\left(z)+\\\\frac{1-\\\\gamma }{\\\\alpha \\\\gamma }z{f}^{^{\\\\prime\\\\prime} }\\\\left(z)-\\\\beta }{1-\\\\beta }\\\\right\\\\}\\\\gt 0 holds. We find conditions on the numbers α , β \\\\alpha ,\\\\beta , and γ \\\\gamma such that P α ( β , γ ) ⊆ S P ( λ ) {{\\\\mathcal{P}}}_{\\\\alpha }\\\\left(\\\\beta ,\\\\gamma )\\\\subseteq SP\\\\left(\\\\lambda ) , for λ ∈ ( − π 2 , π 2 ) \\\\lambda \\\\in \\\\left(-\\\\frac{\\\\pi }{2},\\\\frac{\\\\pi }{2}) , where S P ( λ ) SP\\\\left(\\\\lambda ) denotes the set of all λ \\\\lambda -spirallike functions. We also make use of Ruscheweyh’s duality theory to derive conditions on the numbers α , β , γ \\\\alpha ,\\\\beta ,\\\\gamma and the real-valued function φ \\\\varphi so that the integral operator V φ ( f ) {V}_{\\\\varphi }(f) maps the set P α ( β , γ ) {{\\\\mathcal{P}}}_{\\\\alpha }\\\\left(\\\\beta ,\\\\gamma ) into the set S P ( λ ) SP\\\\left(\\\\lambda ) , provided φ \\\\varphi is non-negative normalized function ( ∫ 0 1 φ ( t ) d t = 1 ) \\\\left({\\\\int }_{0}^{1}\\\\varphi \\\\left(t){\\\\rm{d}}t=1) and V φ ( f ) ( z ) = ∫ 0 1 φ ( t ) f ( t z ) t d t . {V}_{\\\\varphi }(f)\\\\left(z)=\\\\underset{0}{\\\\overset{1}{\\\\int }}\\\\varphi \\\\left(t)\\\\frac{f\\\\left(tz)}{t}{\\\\rm{d}}t.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0168\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0168","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了一类定义在单位开盘U =上的解析函数 { Z:∣Z∣< 1 } {\mathcal{U}}=\left{z:| z| \lt 1\right},使得对于每一个f∈P α (β, γ) f\in {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma ), α > 0 \alpha \gt 0,0≤β≤10\le \beta \le 1,0 < γ≤1,0\lt \gamma \le 1,和∣z∣< 1 | z| \lt 1、不等式Re f ' (z) + 1−γ α γ z f″(z)−β 1−β > 0 {\rm{Re}}\left{\frac{f^{\prime} \left(z)+\frac{1-\gamma }{\alpha \gamma }z{f}^{^{\prime\prime} }\left(z)-\beta }{1-\beta }\right}\gt 0保持不变。我们找到了α, β的条件 \alpha ,\beta , γ \gamma 使P α (β, γ)≤P (λ) {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma )\subseteq sp\left(\lambda ),对于λ∈(−π 2, π 2) \lambda \in \left(-\frac{\pi }{2},\frac{\pi }{2}),其中SP (λ) SP\left(\lambda )表示所有λ的集合 \lambda -螺旋函数。我们还利用Ruscheweyh的对偶理论推导了α, β, γ的条件 \alpha ,\beta ,\gamma 和实值函数φ \varphi 使得积分算子V φ (f) {v}_{\varphi }(f)映射集合P α (β, γ) {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma )分解为集合SP (λ) SP\left(\lambda ),提供φ \varphi 是非负归一化函数(∫0 1 φ (t) d t = 1) \left({\int }_{0}^{1}\varphi \left(t){\rm{d}}t=1), V φ (f) (z) =∫1 φ (t) f (z) t dt。 {v}_{\varphi }(f)\left(z)=\underset{0}{\overset{1}{\int }}\varphi \left(t)\frac{f\left(tz)}{t}{\rm{d}}t。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality for convolution on subclasses of analytic functions and weighted integral operators
Abstract In this article, we investigate a class of analytic functions defined on the unit open disc U = { z : ∣ z ∣ < 1 } {\mathcal{U}}=\left\{z:| z| \lt 1\right\} , such that for every f ∈ P α ( β , γ ) f\in {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma ) , α > 0 \alpha \gt 0 , 0 ≤ β ≤ 1 0\le \beta \le 1 , 0 < γ ≤ 1 0\lt \gamma \le 1 , and ∣ z ∣ < 1 | z| \lt 1 , the inequality Re f ′ ( z ) + 1 − γ α γ z f ″ ( z ) − β 1 − β > 0 {\rm{Re}}\left\{\frac{f^{\prime} \left(z)+\frac{1-\gamma }{\alpha \gamma }z{f}^{^{\prime\prime} }\left(z)-\beta }{1-\beta }\right\}\gt 0 holds. We find conditions on the numbers α , β \alpha ,\beta , and γ \gamma such that P α ( β , γ ) ⊆ S P ( λ ) {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma )\subseteq SP\left(\lambda ) , for λ ∈ ( − π 2 , π 2 ) \lambda \in \left(-\frac{\pi }{2},\frac{\pi }{2}) , where S P ( λ ) SP\left(\lambda ) denotes the set of all λ \lambda -spirallike functions. We also make use of Ruscheweyh’s duality theory to derive conditions on the numbers α , β , γ \alpha ,\beta ,\gamma and the real-valued function φ \varphi so that the integral operator V φ ( f ) {V}_{\varphi }(f) maps the set P α ( β , γ ) {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma ) into the set S P ( λ ) SP\left(\lambda ) , provided φ \varphi is non-negative normalized function ( ∫ 0 1 φ ( t ) d t = 1 ) \left({\int }_{0}^{1}\varphi \left(t){\rm{d}}t=1) and V φ ( f ) ( z ) = ∫ 0 1 φ ( t ) f ( t z ) t d t . {V}_{\varphi }(f)\left(z)=\underset{0}{\overset{1}{\int }}\varphi \left(t)\frac{f\left(tz)}{t}{\rm{d}}t.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信