{"title":"l_p$-空间上的一类数值半径峰$n$-线性映射","authors":"S. Kim","doi":"10.30970/ms.57.1.10-15","DOIUrl":null,"url":null,"abstract":"For $n\\geq 2$ and a real Banach space $E,$ ${\\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\\Pi(E)=\\Big\\{[x^*, (x_1, \\ldots, x_n)]: x^{*}(x_j)=\\|x^{*}\\|=\\|x_j\\|=1~\\mbox{for}~{j=1, \\ldots, n}\\Big\\}.$$For $T\\in {\\mathcal L}(^n E:E),$ we define $$\\qopname\\relax o{Nr}({T})=\\Big\\{[x^*, (x_1, \\ldots, x_n)]\\in \\Pi(E): |x^{*}(T(x_1, \\ldots, x_n))|=v(T)\\Big\\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \\ldots, x_n)]\\in \\Pi(E)$ such that $\\qopname\\relax o{Nr}({T})=\\{\\pm [x^{*}, (x_1, \\ldots, x_n)]\\}.$In this paper, we investigate some class of numerical radius peak mappings in ${\\mathcalL}(^n l_p:l_p)$ for $1\\leq p<\\infty.$ Let $(a_{j})_{j\\in \\mathbb{N}}$ be a bounded sequence in $\\mathbb{R}$ such that $\\sup_{j\\in \\mathbb{N}}|a_j|>0.$Define $T\\in {\\mathcal L}(^n l_p:l_p)$ by$$T\\Big(\\sum_{i\\in \\mathbb{N}}x_i^{(1)}e_i, \\cdots, \\sum_{i\\in \\mathbb{N}}x_i^{(n)}e_i \\Big)=\\sum_{j\\in \\mathbb{N}}a_{j}~x_{j}^{(1)}\\cdots x_{j}^{(n)}~e_j.\\qquad\\eqno(*)$$In particular is proved the following statements:\\$1.$\\ If $1< p<+\\infty$ then $T$ is a numerical radius peak mapping if and only if there is $j_0\\in \\mathbb{N}$ such that$$|a_{j_0}|>|a_{j}|~\\mbox{for every}~j\\in \\mathbb{N}\\backslash\\{j_0\\}.$$ \n$2.$\\ If $p=1$ then $T$ is not a numerical radius peak mapping in ${\\mathcal L}(^n l_1:l_1).$","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some class of numerical radius peak $n$-linear mappings on $l_p$-spaces\",\"authors\":\"S. Kim\",\"doi\":\"10.30970/ms.57.1.10-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $n\\\\geq 2$ and a real Banach space $E,$ ${\\\\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\\\\Pi(E)=\\\\Big\\\\{[x^*, (x_1, \\\\ldots, x_n)]: x^{*}(x_j)=\\\\|x^{*}\\\\|=\\\\|x_j\\\\|=1~\\\\mbox{for}~{j=1, \\\\ldots, n}\\\\Big\\\\}.$$For $T\\\\in {\\\\mathcal L}(^n E:E),$ we define $$\\\\qopname\\\\relax o{Nr}({T})=\\\\Big\\\\{[x^*, (x_1, \\\\ldots, x_n)]\\\\in \\\\Pi(E): |x^{*}(T(x_1, \\\\ldots, x_n))|=v(T)\\\\Big\\\\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\\\\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \\\\ldots, x_n)]\\\\in \\\\Pi(E)$ such that $\\\\qopname\\\\relax o{Nr}({T})=\\\\{\\\\pm [x^{*}, (x_1, \\\\ldots, x_n)]\\\\}.$In this paper, we investigate some class of numerical radius peak mappings in ${\\\\mathcalL}(^n l_p:l_p)$ for $1\\\\leq p<\\\\infty.$ Let $(a_{j})_{j\\\\in \\\\mathbb{N}}$ be a bounded sequence in $\\\\mathbb{R}$ such that $\\\\sup_{j\\\\in \\\\mathbb{N}}|a_j|>0.$Define $T\\\\in {\\\\mathcal L}(^n l_p:l_p)$ by$$T\\\\Big(\\\\sum_{i\\\\in \\\\mathbb{N}}x_i^{(1)}e_i, \\\\cdots, \\\\sum_{i\\\\in \\\\mathbb{N}}x_i^{(n)}e_i \\\\Big)=\\\\sum_{j\\\\in \\\\mathbb{N}}a_{j}~x_{j}^{(1)}\\\\cdots x_{j}^{(n)}~e_j.\\\\qquad\\\\eqno(*)$$In particular is proved the following statements:\\\\$1.$\\\\ If $1< p<+\\\\infty$ then $T$ is a numerical radius peak mapping if and only if there is $j_0\\\\in \\\\mathbb{N}$ such that$$|a_{j_0}|>|a_{j}|~\\\\mbox{for every}~j\\\\in \\\\mathbb{N}\\\\backslash\\\\{j_0\\\\}.$$ \\n$2.$\\\\ If $p=1$ then $T$ is not a numerical radius peak mapping in ${\\\\mathcal L}(^n l_1:l_1).$\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.57.1.10-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.57.1.10-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Some class of numerical radius peak $n$-linear mappings on $l_p$-spaces
For $n\geq 2$ and a real Banach space $E,$ ${\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\Pi(E)=\Big\{[x^*, (x_1, \ldots, x_n)]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}\Big\}.$$For $T\in {\mathcal L}(^n E:E),$ we define $$\qopname\relax o{Nr}({T})=\Big\{[x^*, (x_1, \ldots, x_n)]\in \Pi(E): |x^{*}(T(x_1, \ldots, x_n))|=v(T)\Big\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \ldots, x_n)]\in \Pi(E)$ such that $\qopname\relax o{Nr}({T})=\{\pm [x^{*}, (x_1, \ldots, x_n)]\}.$In this paper, we investigate some class of numerical radius peak mappings in ${\mathcalL}(^n l_p:l_p)$ for $1\leq p<\infty.$ Let $(a_{j})_{j\in \mathbb{N}}$ be a bounded sequence in $\mathbb{R}$ such that $\sup_{j\in \mathbb{N}}|a_j|>0.$Define $T\in {\mathcal L}(^n l_p:l_p)$ by$$T\Big(\sum_{i\in \mathbb{N}}x_i^{(1)}e_i, \cdots, \sum_{i\in \mathbb{N}}x_i^{(n)}e_i \Big)=\sum_{j\in \mathbb{N}}a_{j}~x_{j}^{(1)}\cdots x_{j}^{(n)}~e_j.\qquad\eqno(*)$$In particular is proved the following statements:\$1.$\ If $1< p<+\infty$ then $T$ is a numerical radius peak mapping if and only if there is $j_0\in \mathbb{N}$ such that$$|a_{j_0}|>|a_{j}|~\mbox{for every}~j\in \mathbb{N}\backslash\{j_0\}.$$
$2.$\ If $p=1$ then $T$ is not a numerical radius peak mapping in ${\mathcal L}(^n l_1:l_1).$