估计半参数模型的递推差分

IF 1 4区 经济学 Q3 ECONOMICS
Chan Shen, R. Klein
{"title":"估计半参数模型的递推差分","authors":"Chan Shen, R. Klein","doi":"10.1017/s0266466622000329","DOIUrl":null,"url":null,"abstract":"Controlling the bias is central to estimating semiparametric models. Many methods have been developed to control bias in estimating conditional expectations while maintaining a desirable variance order. However, these methods typically do not perform well at moderate sample sizes. Moreover, and perhaps related to their performance, nonoptimal windows are selected with undersmoothing needed to ensure the appropriate bias order. In this paper, we propose a recursive differencing estimator for conditional expectations. When this method is combined with a bias control targeting the derivative of the semiparametric expectation, we are able to obtain asymptotic normality under optimal windows. As suggested by the structure of the recursion, in a wide variety of triple index designs, the proposed bias control performs much better at moderate sample sizes than regular or higher-order kernels and local polynomials.\n","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RECURSIVE DIFFERENCING FOR ESTIMATING SEMIPARAMETRIC MODELS\",\"authors\":\"Chan Shen, R. Klein\",\"doi\":\"10.1017/s0266466622000329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling the bias is central to estimating semiparametric models. Many methods have been developed to control bias in estimating conditional expectations while maintaining a desirable variance order. However, these methods typically do not perform well at moderate sample sizes. Moreover, and perhaps related to their performance, nonoptimal windows are selected with undersmoothing needed to ensure the appropriate bias order. In this paper, we propose a recursive differencing estimator for conditional expectations. When this method is combined with a bias control targeting the derivative of the semiparametric expectation, we are able to obtain asymptotic normality under optimal windows. As suggested by the structure of the recursion, in a wide variety of triple index designs, the proposed bias control performs much better at moderate sample sizes than regular or higher-order kernels and local polynomials.\\n\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466622000329\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466622000329","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

控制偏差是估计半参数模型的核心。已经开发了许多方法来控制估计条件期望时的偏差,同时保持理想的方差顺序。然而,这些方法通常在中等样本量下表现不佳。此外,可能与它们的性能有关的是,选择非最优窗口时需要进行欠平滑,以确保适当的偏置顺序。本文提出了条件期望的递归差分估计。当该方法与针对半参数期望导数的偏差控制相结合时,我们能够在最优窗口下获得渐近正态性。正如递归结构所表明的那样,在多种三重指数设计中,所提出的偏差控制在中等样本量下的表现要比正则或高阶核和局部多项式好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RECURSIVE DIFFERENCING FOR ESTIMATING SEMIPARAMETRIC MODELS
Controlling the bias is central to estimating semiparametric models. Many methods have been developed to control bias in estimating conditional expectations while maintaining a desirable variance order. However, these methods typically do not perform well at moderate sample sizes. Moreover, and perhaps related to their performance, nonoptimal windows are selected with undersmoothing needed to ensure the appropriate bias order. In this paper, we propose a recursive differencing estimator for conditional expectations. When this method is combined with a bias control targeting the derivative of the semiparametric expectation, we are able to obtain asymptotic normality under optimal windows. As suggested by the structure of the recursion, in a wide variety of triple index designs, the proposed bias control performs much better at moderate sample sizes than regular or higher-order kernels and local polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信