基于计算机视觉的m序列目标位移测量

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL
Yi-ding Hu, Qi Xia, Rongrong Hou, Y. Xia, Jiantao Yan
{"title":"基于计算机视觉的m序列目标位移测量","authors":"Yi-ding Hu, Qi Xia, Rongrong Hou, Y. Xia, Jiantao Yan","doi":"10.12989/SSS.2021.27.3.537","DOIUrl":null,"url":null,"abstract":"The development of image sensors enables the application of vision-based techniques to the non-contact displacement measurement of large-scale structures. The features of the physical targets are critical to the accuracy, stability and anti-interference of the displacement measurement results. In this study, a novel m-sequence target and the associated circular correlation processing technique are developed for real-time displacement measurement. The properties of the m-sequence as a pseudo-random sequence are introduced. The vision-based displacement calculation method is then derived from the correlation property of the m-sequence. The algorithms and measurement systems are integrated in the LabVIEW environment. To verify the anti-interference performance of the developed system, static and dynamic experimental tests are carried out with various forms of interference, such as partial occlusion, uneven illumination, out of focus and smoke effect. Experimental results indicate that the developed system cannot only accurately measure structural displacement, but also has outstanding antiinterference performance, even if 30% of the target is masked.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"27 1","pages":"537"},"PeriodicalIF":2.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computer vision-based displacement measurement with m-sequence target\",\"authors\":\"Yi-ding Hu, Qi Xia, Rongrong Hou, Y. Xia, Jiantao Yan\",\"doi\":\"10.12989/SSS.2021.27.3.537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of image sensors enables the application of vision-based techniques to the non-contact displacement measurement of large-scale structures. The features of the physical targets are critical to the accuracy, stability and anti-interference of the displacement measurement results. In this study, a novel m-sequence target and the associated circular correlation processing technique are developed for real-time displacement measurement. The properties of the m-sequence as a pseudo-random sequence are introduced. The vision-based displacement calculation method is then derived from the correlation property of the m-sequence. The algorithms and measurement systems are integrated in the LabVIEW environment. To verify the anti-interference performance of the developed system, static and dynamic experimental tests are carried out with various forms of interference, such as partial occlusion, uneven illumination, out of focus and smoke effect. Experimental results indicate that the developed system cannot only accurately measure structural displacement, but also has outstanding antiinterference performance, even if 30% of the target is masked.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":\"27 1\",\"pages\":\"537\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.27.3.537\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.3.537","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

摘要

图像传感器的发展使基于视觉的技术应用于大型结构的非接触位移测量。物理目标的特性对位移测量结果的准确性、稳定性和抗干扰性至关重要。本文提出了一种新的m序列靶标及其相关的圆相关处理技术,用于实时位移测量。介绍了m序列作为伪随机序列的性质。根据m序列的相关特性,推导了基于视觉的位移计算方法。算法和测量系统集成在LabVIEW环境中。为了验证所开发系统的抗干扰性能,对部分遮挡、光照不均匀、失焦、烟雾效应等各种形式的干扰进行了静态和动态实验测试。实验结果表明,该系统在30%的目标被遮挡的情况下,不仅能准确测量结构位移,而且具有优异的抗干扰性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer vision-based displacement measurement with m-sequence target
The development of image sensors enables the application of vision-based techniques to the non-contact displacement measurement of large-scale structures. The features of the physical targets are critical to the accuracy, stability and anti-interference of the displacement measurement results. In this study, a novel m-sequence target and the associated circular correlation processing technique are developed for real-time displacement measurement. The properties of the m-sequence as a pseudo-random sequence are introduced. The vision-based displacement calculation method is then derived from the correlation property of the m-sequence. The algorithms and measurement systems are integrated in the LabVIEW environment. To verify the anti-interference performance of the developed system, static and dynamic experimental tests are carried out with various forms of interference, such as partial occlusion, uneven illumination, out of focus and smoke effect. Experimental results indicate that the developed system cannot only accurately measure structural displacement, but also has outstanding antiinterference performance, even if 30% of the target is masked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信