雅可比导数公式的高阶推广及其代数几何类比

IF 0.3 4区 数学 Q4 MATHEMATICS
David Grant
{"title":"雅可比导数公式的高阶推广及其代数几何类比","authors":"David Grant","doi":"10.5802/jtnb.1164","DOIUrl":null,"url":null,"abstract":"We generalize Jacobi’s derivative formula for odd m by writing an m × m determinant of higher order derivatives at 0 of theta functions in 1 variable with characteristic vectors with entries in 1 2mZ as an explicit constant times a power of Dedekind’s η-function. We do so by deriving it from an algebraic geometric version that holds in characteristic not dividing 6m. Introduction In the vast pantheon of theta function identities, a central position is held by Jacobi’s derivative formula. Recall that for τ ∈ h = {x+ iy | y > 0}, and a, b ∈ R, we define the theta function in one variable z ∈ C with characteristic vector [ a b ] by (1) θ [ a b ] (z, τ) = ∑ n∈Z eπi(n+a) τ+2πi(n+a)(z+b). A characteristic vector [ a b ] with a, b ∈ 1 2Z is called a theta characteristic, which is called odd or even depending on whether θ [ a b ] (z, τ) is an odd or even function of z. Modulo 1 there is a unique odd theta characteristic δ := [ 1/2 1/2 ] , and three even ones, 1 := [ 0 0 ] , 2 := [ 1/2 0 ] , 3 := [ 0 1/2 ] . Manuscrit reçu le 6 février 2020, révisé le 2 février 2021, accepté le 18 mai 2021. 2010 Mathematics Subject Classification. 14K25, 14H42. Mots-clefs. Theta functions, elliptic curves.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue\",\"authors\":\"David Grant\",\"doi\":\"10.5802/jtnb.1164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize Jacobi’s derivative formula for odd m by writing an m × m determinant of higher order derivatives at 0 of theta functions in 1 variable with characteristic vectors with entries in 1 2mZ as an explicit constant times a power of Dedekind’s η-function. We do so by deriving it from an algebraic geometric version that holds in characteristic not dividing 6m. Introduction In the vast pantheon of theta function identities, a central position is held by Jacobi’s derivative formula. Recall that for τ ∈ h = {x+ iy | y > 0}, and a, b ∈ R, we define the theta function in one variable z ∈ C with characteristic vector [ a b ] by (1) θ [ a b ] (z, τ) = ∑ n∈Z eπi(n+a) τ+2πi(n+a)(z+b). A characteristic vector [ a b ] with a, b ∈ 1 2Z is called a theta characteristic, which is called odd or even depending on whether θ [ a b ] (z, τ) is an odd or even function of z. Modulo 1 there is a unique odd theta characteristic δ := [ 1/2 1/2 ] , and three even ones, 1 := [ 0 0 ] , 2 := [ 1/2 0 ] , 3 := [ 0 1/2 ] . Manuscrit reçu le 6 février 2020, révisé le 2 février 2021, accepté le 18 mai 2021. 2010 Mathematics Subject Classification. 14K25, 14H42. Mots-clefs. Theta functions, elliptic curves.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1164\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1164","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们推广了奇m的Jacobi导数公式,通过在1个变量中写θ函数的0处的高阶导数的m×m行列式,其中特征向量的项为1 2mZ,作为显式常数乘以Dedekindη-函数的幂。我们通过从代数几何版本中导出它来实现这一点,该版本具有不划分6m的特性。引言在θ函数恒等式的万神殿中,Jacobi的导数公式占据了中心位置。回想一下,对于τ∈h={x+iy|y>0},a,b∈R,我们定义了特征向量为[ab]的一个变量z∈C中的θ函数:(1)θ[ab](z,τ)=∑n∈z eπi(n+a)τ+2πi(n+a)(z+b)。具有A,b∈12Z的特征向量[ab]称为θ特征,根据θ[ab](z,τ)是z的奇函数还是偶函数,称为奇函数或偶函数。Manuscrit reçu le 6 février 2020,réviséle 2 février2021,acceptéle 18 maié2021。2010年数学学科分类。14K25、14H42。Mots clefs。Theta函数,椭圆曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue
We generalize Jacobi’s derivative formula for odd m by writing an m × m determinant of higher order derivatives at 0 of theta functions in 1 variable with characteristic vectors with entries in 1 2mZ as an explicit constant times a power of Dedekind’s η-function. We do so by deriving it from an algebraic geometric version that holds in characteristic not dividing 6m. Introduction In the vast pantheon of theta function identities, a central position is held by Jacobi’s derivative formula. Recall that for τ ∈ h = {x+ iy | y > 0}, and a, b ∈ R, we define the theta function in one variable z ∈ C with characteristic vector [ a b ] by (1) θ [ a b ] (z, τ) = ∑ n∈Z eπi(n+a) τ+2πi(n+a)(z+b). A characteristic vector [ a b ] with a, b ∈ 1 2Z is called a theta characteristic, which is called odd or even depending on whether θ [ a b ] (z, τ) is an odd or even function of z. Modulo 1 there is a unique odd theta characteristic δ := [ 1/2 1/2 ] , and three even ones, 1 := [ 0 0 ] , 2 := [ 1/2 0 ] , 3 := [ 0 1/2 ] . Manuscrit reçu le 6 février 2020, révisé le 2 février 2021, accepté le 18 mai 2021. 2010 Mathematics Subject Classification. 14K25, 14H42. Mots-clefs. Theta functions, elliptic curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信