利用迁移学习预测植物特殊代谢基因的种内和跨种预测

IF 2.6 Q1 AGRONOMY
Bethany M. Moore, Peipei Wang, P. Fan, Aaron Lee, Bryan J. Leong, Y. Lou, Craig A. Schenck, K. Sugimoto, R. Last, Melissa D. Lehti-Shiu, Cornelius S. Barry, Shin-Han Shiu
{"title":"利用迁移学习预测植物特殊代谢基因的种内和跨种预测","authors":"Bethany M. Moore, Peipei Wang, P. Fan, Aaron Lee, Bryan J. Leong, Y. Lou, Craig A. Schenck, K. Sugimoto, R. Last, Melissa D. Lehti-Shiu, Cornelius S. Barry, Shin-Han Shiu","doi":"10.1101/2020.01.13.112102","DOIUrl":null,"url":null,"abstract":"Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like Arabidopsis thaliana have extensive, experimentally derived annotations, whereas many non-model species do not. Here we employed a machine learning strategy, transfer learning, where knowledge from A. thaliana is transferred to predict gene functions in cultivated tomato with fewer experimentally annotated genes. The first tomato SM/GM prediction model using only tomato data performs well (F-measure=0.74, compared with 0.5 for random and 1.0 for perfect predictions), but from manually curating 88 SM/GM genes, we found many mis-predicted entries were likely mis-annotated. When the SM/GM prediction models built with A. thaliana data were used to filter out genes where the A. thaliana-based model predictions disagreed with tomato annotations, the new tomato model trained with filtered data improved significantly (F-measure=0.92). Our study demonstrates that SM/GM genes can be better predicted by leveraging cross-species information. Additionally, our findings provide an example for transfer learning in genomics where knowledge can be transferred from an information-rich species to an information-poor one.","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Within- and cross-species predictions of plant specialized metabolism genes using transfer learning\",\"authors\":\"Bethany M. Moore, Peipei Wang, P. Fan, Aaron Lee, Bryan J. Leong, Y. Lou, Craig A. Schenck, K. Sugimoto, R. Last, Melissa D. Lehti-Shiu, Cornelius S. Barry, Shin-Han Shiu\",\"doi\":\"10.1101/2020.01.13.112102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like Arabidopsis thaliana have extensive, experimentally derived annotations, whereas many non-model species do not. Here we employed a machine learning strategy, transfer learning, where knowledge from A. thaliana is transferred to predict gene functions in cultivated tomato with fewer experimentally annotated genes. The first tomato SM/GM prediction model using only tomato data performs well (F-measure=0.74, compared with 0.5 for random and 1.0 for perfect predictions), but from manually curating 88 SM/GM genes, we found many mis-predicted entries were likely mis-annotated. When the SM/GM prediction models built with A. thaliana data were used to filter out genes where the A. thaliana-based model predictions disagreed with tomato annotations, the new tomato model trained with filtered data improved significantly (F-measure=0.92). Our study demonstrates that SM/GM genes can be better predicted by leveraging cross-species information. Additionally, our findings provide an example for transfer learning in genomics where knowledge can be transferred from an information-rich species to an information-poor one.\",\"PeriodicalId\":36138,\"journal\":{\"name\":\"in silico Plants\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"in silico Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.01.13.112102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.01.13.112102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 10

摘要

植物专用代谢产物介导植物与环境之间的相互作用,具有重要的农业/药用价值。大多数参与专门代谢(SM)的基因都是未知的,因为有大量的代谢产物,并且在区分SM基因和一般代谢(GM)基因方面存在挑战。像拟南芥这样的植物模型有广泛的实验来源的注释,而许多非模型物种没有。在这里,我们采用了一种机器学习策略,即转移学习,将拟南芥的知识转移到具有较少实验注释基因的栽培番茄中,以预测其基因功能。第一个仅使用番茄数据的番茄SM/GM预测模型表现良好(F-measure=0.74,而随机预测为0.5,完美预测为1.0),但通过手动管理88个SM/GM基因,我们发现许多错误预测的条目可能被错误注释。当使用拟南芥数据构建的SM/GM预测模型来筛选出基于拟南芥的模型预测与番茄注释不一致的基因时,使用过滤数据训练的新番茄模型显著改进(F-measure=0.92)。我们的研究表明,利用跨物种信息可以更好地预测SM/GM基因。此外,我们的发现为基因组学中的迁移学习提供了一个例子,即知识可以从信息丰富的物种转移到信息贫乏的物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Within- and cross-species predictions of plant specialized metabolism genes using transfer learning
Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like Arabidopsis thaliana have extensive, experimentally derived annotations, whereas many non-model species do not. Here we employed a machine learning strategy, transfer learning, where knowledge from A. thaliana is transferred to predict gene functions in cultivated tomato with fewer experimentally annotated genes. The first tomato SM/GM prediction model using only tomato data performs well (F-measure=0.74, compared with 0.5 for random and 1.0 for perfect predictions), but from manually curating 88 SM/GM genes, we found many mis-predicted entries were likely mis-annotated. When the SM/GM prediction models built with A. thaliana data were used to filter out genes where the A. thaliana-based model predictions disagreed with tomato annotations, the new tomato model trained with filtered data improved significantly (F-measure=0.92). Our study demonstrates that SM/GM genes can be better predicted by leveraging cross-species information. Additionally, our findings provide an example for transfer learning in genomics where knowledge can be transferred from an information-rich species to an information-poor one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
in silico Plants
in silico Plants Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
4.70
自引率
9.70%
发文量
21
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信