Ghulam Jabar, Muhammad Saeed, Sadaf Khoso, Anham Zafar, Javed Iqbal Saggu, A. Waseem
{"title":"用于燃料油绿色高效氧化脱硫的石墨氮化碳负载新型纳米复合材料的研制","authors":"Ghulam Jabar, Muhammad Saeed, Sadaf Khoso, Anham Zafar, Javed Iqbal Saggu, A. Waseem","doi":"10.1177/18479804221106321","DOIUrl":null,"url":null,"abstract":"The catalysts utilized for oxidative desulfurization have acquired significant attention and ability to improve the quality of the fuel oil by removing sulfur. In this work, the catalysts used for oxidative desulfurization include CoWO4 and Bi2WO6 with graphitic carbon nitride (g-C3N4) as support were synthesized by the one-pot hydrothermal method. Graphitic carbon nitride was obtained by thermal polycondensation of melamine at 550°C for 5 h. These catalysts were homogeneously dispersed on the surface of the support and their structure, morphology, and properties were determined by different characterization techniques (Powder X-Ray Diffractometer, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy, Specific Surface Area (Brunauer, Emmett and Teller (SBET)). The parameters that affect the efficiency of the desulfurization process such as catalyst amount, amount of oxidizing agent, and reaction temperature have been optimized thoroughly. The oxidative desulfurization reaction was studied in terms of kinetics which shows that reaction is pseudo first order. The thermodynamic studies revealed that the reaction is endothermic and spontaneous in nature. The results determined that the catalytic efficiency for the removal of sulfur (as dibenzothiophene) is more than 90% in the presence of support (g-C3N4) to obtain sulfur free fuel.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of graphitic carbon nitride supported novel nanocomposites for green and efficient oxidative desulfurization of fuel oil\",\"authors\":\"Ghulam Jabar, Muhammad Saeed, Sadaf Khoso, Anham Zafar, Javed Iqbal Saggu, A. Waseem\",\"doi\":\"10.1177/18479804221106321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalysts utilized for oxidative desulfurization have acquired significant attention and ability to improve the quality of the fuel oil by removing sulfur. In this work, the catalysts used for oxidative desulfurization include CoWO4 and Bi2WO6 with graphitic carbon nitride (g-C3N4) as support were synthesized by the one-pot hydrothermal method. Graphitic carbon nitride was obtained by thermal polycondensation of melamine at 550°C for 5 h. These catalysts were homogeneously dispersed on the surface of the support and their structure, morphology, and properties were determined by different characterization techniques (Powder X-Ray Diffractometer, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy, Specific Surface Area (Brunauer, Emmett and Teller (SBET)). The parameters that affect the efficiency of the desulfurization process such as catalyst amount, amount of oxidizing agent, and reaction temperature have been optimized thoroughly. The oxidative desulfurization reaction was studied in terms of kinetics which shows that reaction is pseudo first order. The thermodynamic studies revealed that the reaction is endothermic and spontaneous in nature. The results determined that the catalytic efficiency for the removal of sulfur (as dibenzothiophene) is more than 90% in the presence of support (g-C3N4) to obtain sulfur free fuel.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/18479804221106321\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804221106321","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of graphitic carbon nitride supported novel nanocomposites for green and efficient oxidative desulfurization of fuel oil
The catalysts utilized for oxidative desulfurization have acquired significant attention and ability to improve the quality of the fuel oil by removing sulfur. In this work, the catalysts used for oxidative desulfurization include CoWO4 and Bi2WO6 with graphitic carbon nitride (g-C3N4) as support were synthesized by the one-pot hydrothermal method. Graphitic carbon nitride was obtained by thermal polycondensation of melamine at 550°C for 5 h. These catalysts were homogeneously dispersed on the surface of the support and their structure, morphology, and properties were determined by different characterization techniques (Powder X-Ray Diffractometer, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy, Specific Surface Area (Brunauer, Emmett and Teller (SBET)). The parameters that affect the efficiency of the desulfurization process such as catalyst amount, amount of oxidizing agent, and reaction temperature have been optimized thoroughly. The oxidative desulfurization reaction was studied in terms of kinetics which shows that reaction is pseudo first order. The thermodynamic studies revealed that the reaction is endothermic and spontaneous in nature. The results determined that the catalytic efficiency for the removal of sulfur (as dibenzothiophene) is more than 90% in the presence of support (g-C3N4) to obtain sulfur free fuel.
期刊介绍:
Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology