埃博拉病毒数学模型的稳定性分析与控制传播

M. Tahir, G. Zaman, Syed Inayat Ali Shah, S. Muhammad, S. Hussain, M. Ishaq
{"title":"埃博拉病毒数学模型的稳定性分析与控制传播","authors":"M. Tahir, G. Zaman, Syed Inayat Ali Shah, S. Muhammad, S. Hussain, M. Ishaq","doi":"10.30538/psrp-oma2019.0042","DOIUrl":null,"url":null,"abstract":"Abstract: Mathematical modeling of infectious diseases has progressed dramatically over the past four decades and continues to flourish at the nexus of mathematics, epidemiology, and infectious diseases research. Now recognized as a valuable tool, mathematical models are being integrated into the public health decision-making process more than ever before. In this article, a mathematical model of Ebola virus which is named as SEIVR (susceptible, exposed, infected, vaccinated, recovered) model is considered. First, we formulate the model and present the basic properties of the proposed model. Then, basic reproductive number is obtained by using the next-generation matrix approach. Furthermore, the sensitivity analysis of R0 is also discussed, all the endemic equilibrium points related to the disease are derived, a condition to investigate all possible equilibria of the model in terms of the basic reproduction number is obtained. In last, numerical simulation is presented with and without vaccination or control for the proposed model.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The stability analysis and control transmission of mathematical model for Ebola Virus\",\"authors\":\"M. Tahir, G. Zaman, Syed Inayat Ali Shah, S. Muhammad, S. Hussain, M. Ishaq\",\"doi\":\"10.30538/psrp-oma2019.0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Mathematical modeling of infectious diseases has progressed dramatically over the past four decades and continues to flourish at the nexus of mathematics, epidemiology, and infectious diseases research. Now recognized as a valuable tool, mathematical models are being integrated into the public health decision-making process more than ever before. In this article, a mathematical model of Ebola virus which is named as SEIVR (susceptible, exposed, infected, vaccinated, recovered) model is considered. First, we formulate the model and present the basic properties of the proposed model. Then, basic reproductive number is obtained by using the next-generation matrix approach. Furthermore, the sensitivity analysis of R0 is also discussed, all the endemic equilibrium points related to the disease are derived, a condition to investigate all possible equilibria of the model in terms of the basic reproduction number is obtained. In last, numerical simulation is presented with and without vaccination or control for the proposed model.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2019.0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2019.0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要:传染病的数学建模在过去四十年中取得了巨大进展,并在数学、流行病学和传染病研究的结合中继续蓬勃发展。数学模型现在被认为是一种有价值的工具,比以往任何时候都更能融入公共卫生决策过程。本文考虑了埃博拉病毒的一个数学模型SEIVR(易感、暴露、感染、接种、康复)模型。首先,我们建立了模型,并给出了所提出模型的基本性质。然后,利用下一代矩阵方法得到基本繁殖数。此外,还讨论了R0的敏感性分析,导出了与该疾病相关的所有地方病平衡点,得到了用基本繁殖数研究该模型所有可能平衡的条件。最后,对所提出的模型进行了有无疫苗接种或控制的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stability analysis and control transmission of mathematical model for Ebola Virus
Abstract: Mathematical modeling of infectious diseases has progressed dramatically over the past four decades and continues to flourish at the nexus of mathematics, epidemiology, and infectious diseases research. Now recognized as a valuable tool, mathematical models are being integrated into the public health decision-making process more than ever before. In this article, a mathematical model of Ebola virus which is named as SEIVR (susceptible, exposed, infected, vaccinated, recovered) model is considered. First, we formulate the model and present the basic properties of the proposed model. Then, basic reproductive number is obtained by using the next-generation matrix approach. Furthermore, the sensitivity analysis of R0 is also discussed, all the endemic equilibrium points related to the disease are derived, a condition to investigate all possible equilibria of the model in terms of the basic reproduction number is obtained. In last, numerical simulation is presented with and without vaccination or control for the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信