{"title":"超高清成像法从水样中分离微塑料","authors":"M. Roussey","doi":"10.1051/jeos/2023010","DOIUrl":null,"url":null,"abstract":"In this study a commercial particle analyzer was used to image and help sorting microplastic particles (MPs) dispersed in filtrated and de-aerated tap water. The device provides a relatively easy and fast procedure for obtaining ultra-high-definition imaging, allowing the determination of shape, size, and number of 2D-projections of solid particles. The image analysis revealed clear differences among the studied different MPs originating from the grinding of five common grades of plastic sheets as they affect the image rendering differently, principally due to the light scattering either at the surface or in the volume of the microplastics. The high-quality imaging of the device also allows the discrimination of the microplastics from air bubbles with well-defined spherical shapes as well as to obtain an estimate of the size of MPs in a snapshot. We associate the differences among the shapes of the identified MPs in this study depending on the plastic type with known physical properties, such as brittleness, crystallinity, or softness. Furthermore, as a novel method we exploit a parameter based on the light intensity map from moving particles in cuvette flow to sort MPs from other particles, such as, wood fiber, human hair, and air bubbles. Using the light intensity map, which is related to the plastic-water refractive index ratio, the presence of microplastics in water can be revealed among other particles, but not their specific plastic type.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sorting microplastics from other materials in water samples by ultra-high-definition imaging\",\"authors\":\"M. Roussey\",\"doi\":\"10.1051/jeos/2023010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study a commercial particle analyzer was used to image and help sorting microplastic particles (MPs) dispersed in filtrated and de-aerated tap water. The device provides a relatively easy and fast procedure for obtaining ultra-high-definition imaging, allowing the determination of shape, size, and number of 2D-projections of solid particles. The image analysis revealed clear differences among the studied different MPs originating from the grinding of five common grades of plastic sheets as they affect the image rendering differently, principally due to the light scattering either at the surface or in the volume of the microplastics. The high-quality imaging of the device also allows the discrimination of the microplastics from air bubbles with well-defined spherical shapes as well as to obtain an estimate of the size of MPs in a snapshot. We associate the differences among the shapes of the identified MPs in this study depending on the plastic type with known physical properties, such as brittleness, crystallinity, or softness. Furthermore, as a novel method we exploit a parameter based on the light intensity map from moving particles in cuvette flow to sort MPs from other particles, such as, wood fiber, human hair, and air bubbles. Using the light intensity map, which is related to the plastic-water refractive index ratio, the presence of microplastics in water can be revealed among other particles, but not their specific plastic type.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023010\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023010","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Sorting microplastics from other materials in water samples by ultra-high-definition imaging
In this study a commercial particle analyzer was used to image and help sorting microplastic particles (MPs) dispersed in filtrated and de-aerated tap water. The device provides a relatively easy and fast procedure for obtaining ultra-high-definition imaging, allowing the determination of shape, size, and number of 2D-projections of solid particles. The image analysis revealed clear differences among the studied different MPs originating from the grinding of five common grades of plastic sheets as they affect the image rendering differently, principally due to the light scattering either at the surface or in the volume of the microplastics. The high-quality imaging of the device also allows the discrimination of the microplastics from air bubbles with well-defined spherical shapes as well as to obtain an estimate of the size of MPs in a snapshot. We associate the differences among the shapes of the identified MPs in this study depending on the plastic type with known physical properties, such as brittleness, crystallinity, or softness. Furthermore, as a novel method we exploit a parameter based on the light intensity map from moving particles in cuvette flow to sort MPs from other particles, such as, wood fiber, human hair, and air bubbles. Using the light intensity map, which is related to the plastic-water refractive index ratio, the presence of microplastics in water can be revealed among other particles, but not their specific plastic type.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.