分数色配分函数的模素数同余

Q2 Mathematics
Riyajur Rahman, N. Saikia
{"title":"分数色配分函数的模素数同余","authors":"Riyajur Rahman, N. Saikia","doi":"10.1108/ajms-09-2021-0235","DOIUrl":null,"url":null,"abstract":"PurposeLet p[1,r;t] be defined by ∑n=0∞p[1,r;t](n)qn=(E1Er)t, where t is a non-zero rational number, r ≥ 1 is an integer and Er=∏n=0∞(1−qr(n+1)) for |q| < 1. The function p[1,r;t](n) is the generalisation of the two-colour partition function p[1,r;−1](n). In this paper, the authors prove some new congruences modulo odd prime ℓ by taking r = 5, 7, 11 and 13, and non-integral rational values of t.Design/methodology/approachUsing q-series expansion/identities, the authors established general congruence modulo prime number for two-colour partition function.FindingsIn the paper, the authors study congruence properties of two-colour partition function for fractional values. The authors also give some particular cases as examples.Originality/valueThe partition functions for fractional value is studied in 2019 by Chan and Wang for Ramanujan's general partition function and then extended by Xia and Zhu in 2020. In 2021, Baruah and Das also proved some congruences related to fractional partition functions previously investigated by Chan and Wang. In this sequel, some congruences are proved for two-colour partitions in this paper. The results presented in the paper are original.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences modulo prime for fractional colour partition function\",\"authors\":\"Riyajur Rahman, N. Saikia\",\"doi\":\"10.1108/ajms-09-2021-0235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeLet p[1,r;t] be defined by ∑n=0∞p[1,r;t](n)qn=(E1Er)t, where t is a non-zero rational number, r ≥ 1 is an integer and Er=∏n=0∞(1−qr(n+1)) for |q| < 1. The function p[1,r;t](n) is the generalisation of the two-colour partition function p[1,r;−1](n). In this paper, the authors prove some new congruences modulo odd prime ℓ by taking r = 5, 7, 11 and 13, and non-integral rational values of t.Design/methodology/approachUsing q-series expansion/identities, the authors established general congruence modulo prime number for two-colour partition function.FindingsIn the paper, the authors study congruence properties of two-colour partition function for fractional values. The authors also give some particular cases as examples.Originality/valueThe partition functions for fractional value is studied in 2019 by Chan and Wang for Ramanujan's general partition function and then extended by Xia and Zhu in 2020. In 2021, Baruah and Das also proved some congruences related to fractional partition functions previously investigated by Chan and Wang. In this sequel, some congruences are proved for two-colour partitions in this paper. The results presented in the paper are original.\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ajms-09-2021-0235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-09-2021-0235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的设p[1,r;t]定义为∑n=0∞p[1,r;t](n)qn=(E1Er)t,其中t为非零有理数,r≥1为整数,对于|q| < 1, Er=∏n=0∞(1−qr(n+1))。函数p[1,r;t](n)是双色配分函数p[1,r;−1](n)的推广。本文用r = 5、7、11、13和t的非整有理值证明了一些模奇素数的新同余。设计/方法/方法利用q级数展开/恒等式,建立了双色配分函数的一般同余模素数。研究分数值双色配分函数的同余性质。作者还列举了一些具体案例作为例子。分数值的配分函数由Chan和Wang在2019年对Ramanujan的一般配分函数进行了研究,然后由Xia和Zhu在2020年进行了扩展。2021年,Baruah和Das也证明了Chan和Wang之前研究的分数配分函数的一些同余。在此续文中,证明了双色分区的若干同余。本文的研究结果是原创的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruences modulo prime for fractional colour partition function
PurposeLet p[1,r;t] be defined by ∑n=0∞p[1,r;t](n)qn=(E1Er)t, where t is a non-zero rational number, r ≥ 1 is an integer and Er=∏n=0∞(1−qr(n+1)) for |q| < 1. The function p[1,r;t](n) is the generalisation of the two-colour partition function p[1,r;−1](n). In this paper, the authors prove some new congruences modulo odd prime ℓ by taking r = 5, 7, 11 and 13, and non-integral rational values of t.Design/methodology/approachUsing q-series expansion/identities, the authors established general congruence modulo prime number for two-colour partition function.FindingsIn the paper, the authors study congruence properties of two-colour partition function for fractional values. The authors also give some particular cases as examples.Originality/valueThe partition functions for fractional value is studied in 2019 by Chan and Wang for Ramanujan's general partition function and then extended by Xia and Zhu in 2020. In 2021, Baruah and Das also proved some congruences related to fractional partition functions previously investigated by Chan and Wang. In this sequel, some congruences are proved for two-colour partitions in this paper. The results presented in the paper are original.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信