{"title":"广义投影积空间与Dold流形","authors":"Soumen Sarkar, Peter Zvengrowsk","doi":"10.4310/hha.2022.v24.n2.a13","DOIUrl":null,"url":null,"abstract":"Don Davis introduced projective product spaces in 2010 as a generalization of real projective spaces and studied several topological properties of these spaces. On the other hand, Dold manifolds were introduced by A. Dold long back in 1956 to study the generators of the non-oriented cobordism ring. From then on several interesting properties of Dold manifolds are studies. Recently, in 2019, Nath and Sankaran make a slight generalization of Dold manifolds. In this paper, we generalize the notion of projective product spaces and Dold manifolds which gives infinitely many different class of new manifolds. Our main goal here is to discuss integral homology groups, cohomology ring structures, stable tangent bundles and vector field problems on certain generalized projective product spaces and Dold manifolds.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On generalized projective product spaces and Dold manifolds\",\"authors\":\"Soumen Sarkar, Peter Zvengrowsk\",\"doi\":\"10.4310/hha.2022.v24.n2.a13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Don Davis introduced projective product spaces in 2010 as a generalization of real projective spaces and studied several topological properties of these spaces. On the other hand, Dold manifolds were introduced by A. Dold long back in 1956 to study the generators of the non-oriented cobordism ring. From then on several interesting properties of Dold manifolds are studies. Recently, in 2019, Nath and Sankaran make a slight generalization of Dold manifolds. In this paper, we generalize the notion of projective product spaces and Dold manifolds which gives infinitely many different class of new manifolds. Our main goal here is to discuss integral homology groups, cohomology ring structures, stable tangent bundles and vector field problems on certain generalized projective product spaces and Dold manifolds.\",\"PeriodicalId\":55050,\"journal\":{\"name\":\"Homology Homotopy and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Homology Homotopy and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2022.v24.n2.a13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n2.a13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On generalized projective product spaces and Dold manifolds
Don Davis introduced projective product spaces in 2010 as a generalization of real projective spaces and studied several topological properties of these spaces. On the other hand, Dold manifolds were introduced by A. Dold long back in 1956 to study the generators of the non-oriented cobordism ring. From then on several interesting properties of Dold manifolds are studies. Recently, in 2019, Nath and Sankaran make a slight generalization of Dold manifolds. In this paper, we generalize the notion of projective product spaces and Dold manifolds which gives infinitely many different class of new manifolds. Our main goal here is to discuss integral homology groups, cohomology ring structures, stable tangent bundles and vector field problems on certain generalized projective product spaces and Dold manifolds.
期刊介绍:
Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.