星形超曲面的Bangert-Hingston定理

IF 0.7 1区 数学 Q2 MATHEMATICS
Alessio Pellegrini
{"title":"星形超曲面的Bangert-Hingston定理","authors":"Alessio Pellegrini","doi":"10.3934/jmd.2023011","DOIUrl":null,"url":null,"abstract":"Let $Q$ be a closed manifold with non-trivial first Betti number that admits a non-trivial $S^1$-action, and $\\Sigma \\subseteq T^*Q$ a non-degenerate starshaped hypersurface. We prove that the number of geometrically distinct Reeb orbits of period at most $T$ on $\\Sigma$ grows at least logarithmically in $T$.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bangert–Hingston theorem for starshaped hypersurfaces\",\"authors\":\"Alessio Pellegrini\",\"doi\":\"10.3934/jmd.2023011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $Q$ be a closed manifold with non-trivial first Betti number that admits a non-trivial $S^1$-action, and $\\\\Sigma \\\\subseteq T^*Q$ a non-degenerate starshaped hypersurface. We prove that the number of geometrically distinct Reeb orbits of period at most $T$ on $\\\\Sigma$ grows at least logarithmically in $T$.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2023011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2023011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$Q$是一个具有非平凡第一Betti数的闭流形,它承认一个非平凡的$S^1$-作用,$\Sigma \子集$ T^*Q$是一个非简并星形超曲面。我们证明了在$ $ $\Sigma$上周期不超过$ $T$的几何上不同的Reeb轨道的数目在$ $ $T$中至少呈对数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bangert–Hingston theorem for starshaped hypersurfaces
Let $Q$ be a closed manifold with non-trivial first Betti number that admits a non-trivial $S^1$-action, and $\Sigma \subseteq T^*Q$ a non-degenerate starshaped hypersurface. We prove that the number of geometrically distinct Reeb orbits of period at most $T$ on $\Sigma$ grows at least logarithmically in $T$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信