单位圆上具有自由正态分布的自由乘法卷积的单模态

IF 0.7 4区 数学 Q2 MATHEMATICS
Takahiro Hasebe, Yuki Ueda
{"title":"单位圆上具有自由正态分布的自由乘法卷积的单模态","authors":"Takahiro Hasebe, Yuki Ueda","doi":"10.7900/jot.2019mar23.2264","DOIUrl":null,"url":null,"abstract":"We study unimodality for free multiplicative convolution with free normal distributions {λt}t>0 on the unit circle. We give four results on unimodality for μ⊠λt: (1) if μ is a symmetric unimodal distribution on the unit circle then so is μ⊠λt at any time t>0; (2) if μ is a symmetric distribution on T supported on {eiθ:θ∈[−φ,φ]} for some φ∈(0,π2), then μ⊠λt is unimodal for sufficiently large t>0; (3) b⊠λt is not unimodal at any time t>0, where b is the equally weighted Bernoulli distribution on {1,−1}; (4) λt is not freely strongly unimodal for sufficiently small t>0. Moreover, we study unimodality for classical multiplicative convolution, which is useful in proving the above four results.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unimodality for free multiplicative convolution with free normal distributions on the unit circle\",\"authors\":\"Takahiro Hasebe, Yuki Ueda\",\"doi\":\"10.7900/jot.2019mar23.2264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study unimodality for free multiplicative convolution with free normal distributions {λt}t>0 on the unit circle. We give four results on unimodality for μ⊠λt: (1) if μ is a symmetric unimodal distribution on the unit circle then so is μ⊠λt at any time t>0; (2) if μ is a symmetric distribution on T supported on {eiθ:θ∈[−φ,φ]} for some φ∈(0,π2), then μ⊠λt is unimodal for sufficiently large t>0; (3) b⊠λt is not unimodal at any time t>0, where b is the equally weighted Bernoulli distribution on {1,−1}; (4) λt is not freely strongly unimodal for sufficiently small t>0. Moreover, we study unimodality for classical multiplicative convolution, which is useful in proving the above four results.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2019mar23.2264\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019mar23.2264","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了单位圆上自由正态分布{λt}t>0的自由乘法卷积的单峰性。我们给出了关于μλt的单峰性的四个结果:(1)如果μ是单位圆上的对称单峰分布,那么在任何时间t>0,μλt也是;(2) 对于一些φ∈(0,π2),如果μ是T上支持在{eiθ:θ∈[-φ,φ]}上的对称分布,那么对于足够大的T>0,μλT是单峰的;(3) b⊠λt在任何时间t>0都不是单峰的,其中b是{1,−1}上的等权伯努利分布;(4) 对于足够小的t>0,λt不是自由强单峰的。此外,我们还研究了经典乘法卷积的单峰性,这对证明上述四个结果是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unimodality for free multiplicative convolution with free normal distributions on the unit circle
We study unimodality for free multiplicative convolution with free normal distributions {λt}t>0 on the unit circle. We give four results on unimodality for μ⊠λt: (1) if μ is a symmetric unimodal distribution on the unit circle then so is μ⊠λt at any time t>0; (2) if μ is a symmetric distribution on T supported on {eiθ:θ∈[−φ,φ]} for some φ∈(0,π2), then μ⊠λt is unimodal for sufficiently large t>0; (3) b⊠λt is not unimodal at any time t>0, where b is the equally weighted Bernoulli distribution on {1,−1}; (4) λt is not freely strongly unimodal for sufficiently small t>0. Moreover, we study unimodality for classical multiplicative convolution, which is useful in proving the above four results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信