群中的四元数型循环Fibonacci序列

IF 0.4 Q4 MATHEMATICS
N. Yilmaz, E. K. Çetinalp, Ö. Deveci
{"title":"群中的四元数型循环Fibonacci序列","authors":"N. Yilmaz, E. K. Çetinalp, Ö. Deveci","doi":"10.7546/nntdm.2023.29.2.226-240","DOIUrl":null,"url":null,"abstract":"In this paper, we define the six different quaternion-type cyclic-Fibonacci sequences and present some properties, such as, the Cassini formula and generating function. Then, we study quaternion-type cyclic-Fibonacci sequences modulo m. Also we present the relationships between the lengths of periods of the quaternion-type cyclic-Fibonacci sequences of the first, second, third, fourth, fifth and sixth kinds modulo m and the generating matrices of these sequences. Finally, we introduce the quaternion-type cyclic-Fibonacci sequences in finite groups. We calculate the lengths of periods for these sequences of the generalized quaternion groups and obtain quaternion-type cyclic-Fibonacci orbits of the quaternion groups Q8 and Q16 as applications of the results.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quaternion-type cyclic-Fibonacci sequences in groups\",\"authors\":\"N. Yilmaz, E. K. Çetinalp, Ö. Deveci\",\"doi\":\"10.7546/nntdm.2023.29.2.226-240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define the six different quaternion-type cyclic-Fibonacci sequences and present some properties, such as, the Cassini formula and generating function. Then, we study quaternion-type cyclic-Fibonacci sequences modulo m. Also we present the relationships between the lengths of periods of the quaternion-type cyclic-Fibonacci sequences of the first, second, third, fourth, fifth and sixth kinds modulo m and the generating matrices of these sequences. Finally, we introduce the quaternion-type cyclic-Fibonacci sequences in finite groups. We calculate the lengths of periods for these sequences of the generalized quaternion groups and obtain quaternion-type cyclic-Fibonacci orbits of the quaternion groups Q8 and Q16 as applications of the results.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.2.226-240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.226-240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了六种不同的四元数类型的循环Fibonacci序列,并给出了一些性质,如Cassini公式和生成函数。然后,我们研究了模m的四元数型循环Fibonacci序列,并给出了模m为第一类、第二类、第三类、第四类、第五类和第六类的四元数字型循环Fibonacci序列的周期长度与这些序列的生成矩阵之间的关系。最后,我们引入有限群中的四元数型循环Fibonacci序列。我们计算了这些广义四元数群序列的周期长度,并得到了四元数组Q8和Q16的四元数型循环Fibonacci轨道作为结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The quaternion-type cyclic-Fibonacci sequences in groups
In this paper, we define the six different quaternion-type cyclic-Fibonacci sequences and present some properties, such as, the Cassini formula and generating function. Then, we study quaternion-type cyclic-Fibonacci sequences modulo m. Also we present the relationships between the lengths of periods of the quaternion-type cyclic-Fibonacci sequences of the first, second, third, fourth, fifth and sixth kinds modulo m and the generating matrices of these sequences. Finally, we introduce the quaternion-type cyclic-Fibonacci sequences in finite groups. We calculate the lengths of periods for these sequences of the generalized quaternion groups and obtain quaternion-type cyclic-Fibonacci orbits of the quaternion groups Q8 and Q16 as applications of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信