中压馈线技术和电价研究中基于测量的负荷参数建模

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Johannes L. Buys;Charles T. Gaunt
{"title":"中压馈线技术和电价研究中基于测量的负荷参数建模","authors":"Johannes L. Buys;Charles T. Gaunt","doi":"10.23919/SAIEE.2022.9785540","DOIUrl":null,"url":null,"abstract":"Transformation in the South African power sector and new load patterns necessitated a review of load models used for financial, technical and tariff analysis. This pilot study took advantage of available data of customer measurements on medium Voltage (MV) feeders in Eskom's database. Load models with distinct profiles for typical days were developed for non-overlapping customer classes using a set of coherent parameters derived from MV chronological load profiles and the k-means algorithm. The results suggested that two profiles can be used to for summer and two profiles can be used for winter instead of using 365 hourly profiles for simulations. The results also reveal that load classification can be improved when the parameters are directed towards specific objectives, and also when the k-means algorithm is supervised using exogenous (external) parameters of loads. A comparison of the results to the economic activity class suggests that there are sub-clusters identifiable within the economic classes. The proposed process is practical, implementable with available data and suitable for various studies on MV networks.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"113 2","pages":"64-74"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8475037/9785536/09785540.pdf","citationCount":"1","resultStr":"{\"title\":\"Measurement-based load parameter modelling for technical and tariff studies of medium voltage feeders\",\"authors\":\"Johannes L. Buys;Charles T. Gaunt\",\"doi\":\"10.23919/SAIEE.2022.9785540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transformation in the South African power sector and new load patterns necessitated a review of load models used for financial, technical and tariff analysis. This pilot study took advantage of available data of customer measurements on medium Voltage (MV) feeders in Eskom's database. Load models with distinct profiles for typical days were developed for non-overlapping customer classes using a set of coherent parameters derived from MV chronological load profiles and the k-means algorithm. The results suggested that two profiles can be used to for summer and two profiles can be used for winter instead of using 365 hourly profiles for simulations. The results also reveal that load classification can be improved when the parameters are directed towards specific objectives, and also when the k-means algorithm is supervised using exogenous (external) parameters of loads. A comparison of the results to the economic activity class suggests that there are sub-clusters identifiable within the economic classes. The proposed process is practical, implementable with available data and suitable for various studies on MV networks.\",\"PeriodicalId\":42493,\"journal\":{\"name\":\"SAIEE Africa Research Journal\",\"volume\":\"113 2\",\"pages\":\"64-74\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8475037/9785536/09785540.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAIEE Africa Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9785540/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9785540/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

--南非电力部门的转型和新的负荷模式需要对用于财务、技术和电价分析的负荷模型进行审查。这项试点研究利用了Eskom数据库中客户对中压(MV)馈线测量的可用数据。使用一组从MV时间负荷分布和k-means算法导出的一致参数,为非重叠客户类别开发了具有典型天数不同分布的负荷模型。结果表明,夏季可以使用两个剖面,冬季可以使用两种剖面,而不是使用365小时剖面进行模拟。结果还表明,当参数指向特定目标时,以及当使用负载的外生(外部)参数监督k均值算法时,可以改进负载分类。将结果与经济活动类别进行比较表明,在经济类别中存在可识别的子集群。所提出的过程是实用的,可利用现有数据实施,适用于MV网络的各种研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement-based load parameter modelling for technical and tariff studies of medium voltage feeders
Transformation in the South African power sector and new load patterns necessitated a review of load models used for financial, technical and tariff analysis. This pilot study took advantage of available data of customer measurements on medium Voltage (MV) feeders in Eskom's database. Load models with distinct profiles for typical days were developed for non-overlapping customer classes using a set of coherent parameters derived from MV chronological load profiles and the k-means algorithm. The results suggested that two profiles can be used to for summer and two profiles can be used for winter instead of using 365 hourly profiles for simulations. The results also reveal that load classification can be improved when the parameters are directed towards specific objectives, and also when the k-means algorithm is supervised using exogenous (external) parameters of loads. A comparison of the results to the economic activity class suggests that there are sub-clusters identifiable within the economic classes. The proposed process is practical, implementable with available data and suitable for various studies on MV networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAIEE Africa Research Journal
SAIEE Africa Research Journal ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信