关于精细度量和hermitian结构的非理想化,I:Galois–Gauss和和和弱分支

IF 0.5 Q3 MATHEMATICS
W. Bley, D. Burns, Carl Hahn
{"title":"关于精细度量和hermitian结构的非理想化,I:Galois–Gauss和和和弱分支","authors":"W. Bley, D. Burns, Carl Hahn","doi":"10.2140/akt.2020.5.79","DOIUrl":null,"url":null,"abstract":"We use techniques of relative algebraic K-theory to develop a common refinement of the existing theories of metrized and hermitian Galois structures in arithmetic. As a first application of this very general approach, we then use it to prove several new results, and to formulate a framework of new conjectures, concerning the detailed arithmetic properties of wildly ramified Galois-Gauss sums.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2020.5.79","citationCount":"4","resultStr":"{\"title\":\"On refined metric and hermitian structures in\\narithmetic, I : Galois–Gauss sums and weak ramification\",\"authors\":\"W. Bley, D. Burns, Carl Hahn\",\"doi\":\"10.2140/akt.2020.5.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use techniques of relative algebraic K-theory to develop a common refinement of the existing theories of metrized and hermitian Galois structures in arithmetic. As a first application of this very general approach, we then use it to prove several new results, and to formulate a framework of new conjectures, concerning the detailed arithmetic properties of wildly ramified Galois-Gauss sums.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2020.5.79\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2020.5.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2020.5.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们利用相对代数k理论的技术,对现有的度量和厄米伽罗瓦结构理论进行了共同的改进。作为这种非常普遍的方法的第一个应用,我们然后用它来证明几个新的结果,并制定了一个新的猜想框架,关于广泛分支的伽罗瓦-高斯和的详细算术性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On refined metric and hermitian structures in arithmetic, I : Galois–Gauss sums and weak ramification
We use techniques of relative algebraic K-theory to develop a common refinement of the existing theories of metrized and hermitian Galois structures in arithmetic. As a first application of this very general approach, we then use it to prove several new results, and to formulate a framework of new conjectures, concerning the detailed arithmetic properties of wildly ramified Galois-Gauss sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信