{"title":"了解在恶劣天气事件中应急管理预报的使用。","authors":"Sean Ernst, Daphne S. LaDue, Alan E. Gerard","doi":"10.15191/NWAJOM.2018.0609","DOIUrl":null,"url":null,"abstract":"For Emergency Managers (EMs), preparations for severe weather have always relied on accurate, well-communicated National Weather Service (NWS) forecasts. As part of their constant work to improve these forecasts, the NWS has recently begun to develop impact-based products that share forecast uncertainty information with EMs, including the Probabilistic Hazard Information (PHI) tool. However, there is a lack of research investigating what forecast uncertainty information EMs understand, and what information needs exist in the current communication paradigm. This study used the Critical Incident Technique to identify themes from incidents involving weather forecast information that went well, or not so well, from the perspective of the EMs responding to them. In total, 11 EMs from a variety of locales east of the Rockies were interviewed—six of whom were county-level, two city, two state, and one from a school district. We found that EMs sought increased forecast detail as a potential event approached in time and built relational trust in the NWS through repeated interactions. EMs had difficulty preparing for events when they did not have details of the expected impacts, or the likelihood of those impacts, for their regions. In summary, EMs are already starting to work in an uncertainty-friendly frame and could be responsive to the impact details and increased forecaster relations proposed with the PHI tool.","PeriodicalId":44039,"journal":{"name":"Journal of Operational Meteorology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Understanding emergency manager forecast use in severe weather events.\",\"authors\":\"Sean Ernst, Daphne S. LaDue, Alan E. Gerard\",\"doi\":\"10.15191/NWAJOM.2018.0609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Emergency Managers (EMs), preparations for severe weather have always relied on accurate, well-communicated National Weather Service (NWS) forecasts. As part of their constant work to improve these forecasts, the NWS has recently begun to develop impact-based products that share forecast uncertainty information with EMs, including the Probabilistic Hazard Information (PHI) tool. However, there is a lack of research investigating what forecast uncertainty information EMs understand, and what information needs exist in the current communication paradigm. This study used the Critical Incident Technique to identify themes from incidents involving weather forecast information that went well, or not so well, from the perspective of the EMs responding to them. In total, 11 EMs from a variety of locales east of the Rockies were interviewed—six of whom were county-level, two city, two state, and one from a school district. We found that EMs sought increased forecast detail as a potential event approached in time and built relational trust in the NWS through repeated interactions. EMs had difficulty preparing for events when they did not have details of the expected impacts, or the likelihood of those impacts, for their regions. In summary, EMs are already starting to work in an uncertainty-friendly frame and could be responsive to the impact details and increased forecaster relations proposed with the PHI tool.\",\"PeriodicalId\":44039,\"journal\":{\"name\":\"Journal of Operational Meteorology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15191/NWAJOM.2018.0609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15191/NWAJOM.2018.0609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Understanding emergency manager forecast use in severe weather events.
For Emergency Managers (EMs), preparations for severe weather have always relied on accurate, well-communicated National Weather Service (NWS) forecasts. As part of their constant work to improve these forecasts, the NWS has recently begun to develop impact-based products that share forecast uncertainty information with EMs, including the Probabilistic Hazard Information (PHI) tool. However, there is a lack of research investigating what forecast uncertainty information EMs understand, and what information needs exist in the current communication paradigm. This study used the Critical Incident Technique to identify themes from incidents involving weather forecast information that went well, or not so well, from the perspective of the EMs responding to them. In total, 11 EMs from a variety of locales east of the Rockies were interviewed—six of whom were county-level, two city, two state, and one from a school district. We found that EMs sought increased forecast detail as a potential event approached in time and built relational trust in the NWS through repeated interactions. EMs had difficulty preparing for events when they did not have details of the expected impacts, or the likelihood of those impacts, for their regions. In summary, EMs are already starting to work in an uncertainty-friendly frame and could be responsive to the impact details and increased forecaster relations proposed with the PHI tool.