具有wick -多项式非线性的随机演化方程

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
T. Levajković, S. Pilipovic, D. Seleši, M. Zigic
{"title":"具有wick -多项式非线性的随机演化方程","authors":"T. Levajković, S. Pilipovic, D. Seleši, M. Zigic","doi":"10.1214/18-EJP241","DOIUrl":null,"url":null,"abstract":"We study nonlinear parabolic stochastic partial differential equations with Wick-power and Wick-polynomial type nonlinearities set in the framework of white noise analysis. These equations include the stochastic Fujita equation, the stochastic Fisher-KPP equation and the stochastic FitzHugh-Nagumo equation among many others. By implementing the theory of $C_0-$semigroups and evolution systems into the chaos expansion theory in infinite dimensional spaces, we prove existence and uniqueness of solutions for this class of SPDEs. In particular, we also treat the linear nonautonomous case and provide several applications featured as stochastic reaction-diffusion equations that arise in biology, medicine and physics.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":"23 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stochastic evolution equations with Wick-polynomial nonlinearities\",\"authors\":\"T. Levajković, S. Pilipovic, D. Seleši, M. Zigic\",\"doi\":\"10.1214/18-EJP241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study nonlinear parabolic stochastic partial differential equations with Wick-power and Wick-polynomial type nonlinearities set in the framework of white noise analysis. These equations include the stochastic Fujita equation, the stochastic Fisher-KPP equation and the stochastic FitzHugh-Nagumo equation among many others. By implementing the theory of $C_0-$semigroups and evolution systems into the chaos expansion theory in infinite dimensional spaces, we prove existence and uniqueness of solutions for this class of SPDEs. In particular, we also treat the linear nonautonomous case and provide several applications featured as stochastic reaction-diffusion equations that arise in biology, medicine and physics.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-EJP241\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-EJP241","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

我们在白噪声分析的框架下研究了具有Wick幂和Wick多项式型非线性集的非线性抛物型随机偏微分方程。这些方程包括随机Fujita方程、随机Fisher KPP方程和随机FitzHugh Nagumo方程等。通过将$C_0-$半群和演化系统的理论应用到无穷维空间中的混沌展开理论中,我们证明了这类SPDE解的存在性和唯一性。特别地,我们还处理了线性非自治情况,并提供了在生物学、医学和物理学中出现的随机反应扩散方程的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic evolution equations with Wick-polynomial nonlinearities
We study nonlinear parabolic stochastic partial differential equations with Wick-power and Wick-polynomial type nonlinearities set in the framework of white noise analysis. These equations include the stochastic Fujita equation, the stochastic Fisher-KPP equation and the stochastic FitzHugh-Nagumo equation among many others. By implementing the theory of $C_0-$semigroups and evolution systems into the chaos expansion theory in infinite dimensional spaces, we prove existence and uniqueness of solutions for this class of SPDEs. In particular, we also treat the linear nonautonomous case and provide several applications featured as stochastic reaction-diffusion equations that arise in biology, medicine and physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信