{"title":"加权透镜深度:在监督分类中的一些应用","authors":"Alejandro Cholaquidis, Ricardo Fraiman, Fabrice Gamboa, Leonardo Moreno","doi":"10.1002/cjs.11724","DOIUrl":null,"url":null,"abstract":"<p>Starting with Tukey's pioneering work in the 1970s, the notion of depth in statistics has been widely extended, especially in the last decade. Such extensions include those to high-dimensional data, functional data, and manifold-valued data. In particular, in the learning paradigm, the depth-depth method has become a useful technique. In this article, we extend the lens depth to the case of data in metric spaces and study its main properties. We also introduce, for Riemannian manifolds, the weighted lens depth. The weighted lens depth is nothing more than a lens depth for a weighted version of the Riemannian distance. To build it, we replace the geodesic distance on the manifold with the Fermat distance, which has the important property of taking into account the density of the data together with the geodesic distance. Next, we illustrate our results with some simulations and also in some interesting real datasets, including pattern recognition in phylogenetic trees, using the depth-depth approach.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Weighted lens depth: Some applications to supervised classification\",\"authors\":\"Alejandro Cholaquidis, Ricardo Fraiman, Fabrice Gamboa, Leonardo Moreno\",\"doi\":\"10.1002/cjs.11724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Starting with Tukey's pioneering work in the 1970s, the notion of depth in statistics has been widely extended, especially in the last decade. Such extensions include those to high-dimensional data, functional data, and manifold-valued data. In particular, in the learning paradigm, the depth-depth method has become a useful technique. In this article, we extend the lens depth to the case of data in metric spaces and study its main properties. We also introduce, for Riemannian manifolds, the weighted lens depth. The weighted lens depth is nothing more than a lens depth for a weighted version of the Riemannian distance. To build it, we replace the geodesic distance on the manifold with the Fermat distance, which has the important property of taking into account the density of the data together with the geodesic distance. Next, we illustrate our results with some simulations and also in some interesting real datasets, including pattern recognition in phylogenetic trees, using the depth-depth approach.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11724\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11724","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Weighted lens depth: Some applications to supervised classification
Starting with Tukey's pioneering work in the 1970s, the notion of depth in statistics has been widely extended, especially in the last decade. Such extensions include those to high-dimensional data, functional data, and manifold-valued data. In particular, in the learning paradigm, the depth-depth method has become a useful technique. In this article, we extend the lens depth to the case of data in metric spaces and study its main properties. We also introduce, for Riemannian manifolds, the weighted lens depth. The weighted lens depth is nothing more than a lens depth for a weighted version of the Riemannian distance. To build it, we replace the geodesic distance on the manifold with the Fermat distance, which has the important property of taking into account the density of the data together with the geodesic distance. Next, we illustrate our results with some simulations and also in some interesting real datasets, including pattern recognition in phylogenetic trees, using the depth-depth approach.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.