通过变Lebesgue空间中多线性分数积分算子的交换子刻画Lipschitz函数

Pub Date : 2023-01-01 DOI:10.1515/agms-2022-0153
Pu Zhang, Jiang-Long Wu
{"title":"通过变Lebesgue空间中多线性分数积分算子的交换子刻画Lipschitz函数","authors":"Pu Zhang, Jiang-Long Wu","doi":"10.1515/agms-2022-0153","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this article is to establish some new characterizations of the (variable) Lipschitz spaces in terms of the boundedness of commutator of multilinear fractional Calderón-Zygmund integral operators in the context of the variable exponent Lebesgue spaces. The authors do so by applying the techniques of Fourier series and multilinear fractional integral operator, as well as some pointwise estimates for the commutators. The key tool in obtaining such a pointwise estimate is a certain generalization of the classical sharp maximal operator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Lipschitz functions via the commutators of multilinear fractional integral operators in variable Lebesgue spaces\",\"authors\":\"Pu Zhang, Jiang-Long Wu\",\"doi\":\"10.1515/agms-2022-0153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main purpose of this article is to establish some new characterizations of the (variable) Lipschitz spaces in terms of the boundedness of commutator of multilinear fractional Calderón-Zygmund integral operators in the context of the variable exponent Lebesgue spaces. The authors do so by applying the techniques of Fourier series and multilinear fractional integral operator, as well as some pointwise estimates for the commutators. The key tool in obtaining such a pointwise estimate is a certain generalization of the classical sharp maximal operator.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的主要目的是在变指数Lebesgue空间中,根据多重线性分式Calderón-Zygmund积分算子的交换子的有界性,建立(可变)Lipschitz空间的一些新的刻画。作者通过应用傅立叶级数和多线性分数积分算子的技术,以及对交换子的一些逐点估计来做到这一点。获得这种逐点估计的关键工具是对经典sharp极大算子的某种推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Characterization of Lipschitz functions via the commutators of multilinear fractional integral operators in variable Lebesgue spaces
Abstract The main purpose of this article is to establish some new characterizations of the (variable) Lipschitz spaces in terms of the boundedness of commutator of multilinear fractional Calderón-Zygmund integral operators in the context of the variable exponent Lebesgue spaces. The authors do so by applying the techniques of Fourier series and multilinear fractional integral operator, as well as some pointwise estimates for the commutators. The key tool in obtaining such a pointwise estimate is a certain generalization of the classical sharp maximal operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信