基于晶体塑性的固溶强化镍基合金蠕变模型

Q4 Engineering
P. Chakraborty, Wen Jiang
{"title":"基于晶体塑性的固溶强化镍基合金蠕变模型","authors":"P. Chakraborty, Wen Jiang","doi":"10.1504/IJMSI.2019.10022236","DOIUrl":null,"url":null,"abstract":"Nickel-based alloys are widely used in high temperature applications due to their favourable properties at extreme conditions. However, due to their high cost, efforts are being relentlessly made to extend the useful life of the components made from these alloys. Such life extension requires reliable constitutive models with detailed quantitative understanding of the factors contributing to property variations. Micromechanical analysis along with multi-scale methods can be a key enabler in developing the required high fidelity models. Particularly for properties such as creep that require long term prediction, accelerated tests with empirical models may prove insufficient. Thus, in the present work, a crystal plasticity-based creep model has been developed for solution strengthened nickel-based alloys. Through this model, the effect of microstructural variations in grain orientation, size, etc. on the secondary creep strain rate can be captured. The performance of the model is evaluated against creep data of alloy 617.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal plasticity-based creep model for solution-strengthened nickel-based alloys\",\"authors\":\"P. Chakraborty, Wen Jiang\",\"doi\":\"10.1504/IJMSI.2019.10022236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel-based alloys are widely used in high temperature applications due to their favourable properties at extreme conditions. However, due to their high cost, efforts are being relentlessly made to extend the useful life of the components made from these alloys. Such life extension requires reliable constitutive models with detailed quantitative understanding of the factors contributing to property variations. Micromechanical analysis along with multi-scale methods can be a key enabler in developing the required high fidelity models. Particularly for properties such as creep that require long term prediction, accelerated tests with empirical models may prove insufficient. Thus, in the present work, a crystal plasticity-based creep model has been developed for solution strengthened nickel-based alloys. Through this model, the effect of microstructural variations in grain orientation, size, etc. on the secondary creep strain rate can be captured. The performance of the model is evaluated against creep data of alloy 617.\",\"PeriodicalId\":39035,\"journal\":{\"name\":\"International Journal of Materials and Structural Integrity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials and Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMSI.2019.10022236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMSI.2019.10022236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

镍基合金因其在极端条件下的良好性能而广泛应用于高温应用。然而,由于它们的高成本,人们正在不懈地努力延长由这些合金制成的部件的使用寿命。这种寿命延长需要可靠的本构模型,并对导致属性变化的因素有详细的定量理解。微力学分析以及多尺度方法可以成为开发所需高保真模型的关键推动者。特别是对于蠕变等需要长期预测的特性,使用经验模型的加速试验可能被证明是不够的。因此,本文建立了一种基于晶体塑性的固溶强化镍基合金蠕变模型。通过该模型,可以捕捉到晶粒取向、尺寸等微观组织变化对二次蠕变应变速率的影响。用617合金的蠕变数据对模型的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal plasticity-based creep model for solution-strengthened nickel-based alloys
Nickel-based alloys are widely used in high temperature applications due to their favourable properties at extreme conditions. However, due to their high cost, efforts are being relentlessly made to extend the useful life of the components made from these alloys. Such life extension requires reliable constitutive models with detailed quantitative understanding of the factors contributing to property variations. Micromechanical analysis along with multi-scale methods can be a key enabler in developing the required high fidelity models. Particularly for properties such as creep that require long term prediction, accelerated tests with empirical models may prove insufficient. Thus, in the present work, a crystal plasticity-based creep model has been developed for solution strengthened nickel-based alloys. Through this model, the effect of microstructural variations in grain orientation, size, etc. on the secondary creep strain rate can be captured. The performance of the model is evaluated against creep data of alloy 617.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信