{"title":"基于机器学习和集成学习算法的点对点僵尸网络检测","authors":"S. Baruah, D. Borah, V. Deka","doi":"10.4018/ijisp.319303","DOIUrl":null,"url":null,"abstract":"Peer-to-peer (P2P) botnet is one of the greatest threats to digital data. It has become a common tool for performing a lot of malicious activities such as DDoS attacks, phishing attacks, spreading spam, identity theft, ransomware, extortion attack, and many other fraudulent activities. P2P botnets are very resilient and stealthy and keep mutating to evade security mechanisms. Therefore, it has become necessary to identify and detect botnet flow from the normal flow. This paper uses supervised machine learning algorithms to detect P2P botnet flow. This paper also uses an ensemble learning technique to combine the performances of various supervised machine learning models to make predictions. To validate the results, four performance metrics have been used. These are accuracy, precision, recall, and F1-score. Experimental results show that the proposed approach delivers 99.99% accuracy, 99.81% precision, 99.11% recall, and 99.32% F1 score, which outperform the previous botnet detection approaches.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Peer-to-Peer Botnet Using Machine Learning Techniques and Ensemble Learning Algorithm\",\"authors\":\"S. Baruah, D. Borah, V. Deka\",\"doi\":\"10.4018/ijisp.319303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peer-to-peer (P2P) botnet is one of the greatest threats to digital data. It has become a common tool for performing a lot of malicious activities such as DDoS attacks, phishing attacks, spreading spam, identity theft, ransomware, extortion attack, and many other fraudulent activities. P2P botnets are very resilient and stealthy and keep mutating to evade security mechanisms. Therefore, it has become necessary to identify and detect botnet flow from the normal flow. This paper uses supervised machine learning algorithms to detect P2P botnet flow. This paper also uses an ensemble learning technique to combine the performances of various supervised machine learning models to make predictions. To validate the results, four performance metrics have been used. These are accuracy, precision, recall, and F1-score. Experimental results show that the proposed approach delivers 99.99% accuracy, 99.81% precision, 99.11% recall, and 99.32% F1 score, which outperform the previous botnet detection approaches.\",\"PeriodicalId\":44332,\"journal\":{\"name\":\"International Journal of Information Security and Privacy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijisp.319303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisp.319303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Detection of Peer-to-Peer Botnet Using Machine Learning Techniques and Ensemble Learning Algorithm
Peer-to-peer (P2P) botnet is one of the greatest threats to digital data. It has become a common tool for performing a lot of malicious activities such as DDoS attacks, phishing attacks, spreading spam, identity theft, ransomware, extortion attack, and many other fraudulent activities. P2P botnets are very resilient and stealthy and keep mutating to evade security mechanisms. Therefore, it has become necessary to identify and detect botnet flow from the normal flow. This paper uses supervised machine learning algorithms to detect P2P botnet flow. This paper also uses an ensemble learning technique to combine the performances of various supervised machine learning models to make predictions. To validate the results, four performance metrics have been used. These are accuracy, precision, recall, and F1-score. Experimental results show that the proposed approach delivers 99.99% accuracy, 99.81% precision, 99.11% recall, and 99.32% F1 score, which outperform the previous botnet detection approaches.
期刊介绍:
As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.