二维时间分数阶扩散反应方程Lie对称解的比较

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES
Alessandra Jannelli, M. Speciale
{"title":"二维时间分数阶扩散反应方程Lie对称解的比较","authors":"Alessandra Jannelli, M. Speciale","doi":"10.1478/AAPP.991A4","DOIUrl":null,"url":null,"abstract":"In this paper, exact and numerical solutions of two dimensional time-fractional diffusion-reaction equation involving the Riemann-Liouville derivative are determined, by applying a procedure that combines the Lie symmetry analysis with the numerical methods. Two new reduced fractional differential equations are obtained by using the Lie symmetry theory. Applying only one Lie transformation, we get a new time-fractional partial differential equation and, applying a further Lie transformation, we get an ordinary differential equation. Numerical solutions of the reduced differential equations are computed separately by implicit numerical methods. A comparative study between numerical solutions is performed.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison between solutions of a two-dimensional time-fractional diffusion-reaction equation through Lie symmetries\",\"authors\":\"Alessandra Jannelli, M. Speciale\",\"doi\":\"10.1478/AAPP.991A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, exact and numerical solutions of two dimensional time-fractional diffusion-reaction equation involving the Riemann-Liouville derivative are determined, by applying a procedure that combines the Lie symmetry analysis with the numerical methods. Two new reduced fractional differential equations are obtained by using the Lie symmetry theory. Applying only one Lie transformation, we get a new time-fractional partial differential equation and, applying a further Lie transformation, we get an ordinary differential equation. Numerical solutions of the reduced differential equations are computed separately by implicit numerical methods. A comparative study between numerical solutions is performed.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.991A4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.991A4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文采用李对称性分析与数值方法相结合的方法,确定了含Riemann-Liouville导数的二维时间分数阶扩散反应方程的精确解和数值解。利用李对称理论得到了两个新的降阶分数阶微分方程。只应用一个李变换,我们得到一个新的时间分数阶偏微分方程,再应用一个李变换,我们就得到一个常微分方程。用隐式数值方法分别计算了简化微分方程的数值解。对数值解进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between solutions of a two-dimensional time-fractional diffusion-reaction equation through Lie symmetries
In this paper, exact and numerical solutions of two dimensional time-fractional diffusion-reaction equation involving the Riemann-Liouville derivative are determined, by applying a procedure that combines the Lie symmetry analysis with the numerical methods. Two new reduced fractional differential equations are obtained by using the Lie symmetry theory. Applying only one Lie transformation, we get a new time-fractional partial differential equation and, applying a further Lie transformation, we get an ordinary differential equation. Numerical solutions of the reduced differential equations are computed separately by implicit numerical methods. A comparative study between numerical solutions is performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
31 weeks
期刊介绍: This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信