耦合Van der Pol振荡系统的概率密度和随机稳定性

IF 0.1 Q4 MATHEMATICS
Sheng-hong Li, Quanxin Zhu
{"title":"耦合Van der Pol振荡系统的概率密度和随机稳定性","authors":"Sheng-hong Li, Quanxin Zhu","doi":"10.1080/23311835.2018.1431092","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the probability density and almost sure asymptotic stability of the coupled Van der Pol oscillator system under the noise excitations are investigated. Through the stochastic averaging method and slow changing process theorem, averaged Fokker–Planck–Kolmogorov equation and exact solution of the dynamical system are obtained. Especially, the marginal density functions of the system excited by the additive white noises are derived. Then, the effects of coupled parameters and noise parameters on the marginal density functions are discussed through the numerical figures. In addition, the almost sure asymptotic stability under the parametric excitation by means of the maximal Lyapunov exponent is studied, and the stable demarcation points about noise intensity are presented.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311835.2018.1431092","citationCount":"3","resultStr":"{\"title\":\"Probability density and stochastic stability for the coupled Van der Pol oscillator system\",\"authors\":\"Sheng-hong Li, Quanxin Zhu\",\"doi\":\"10.1080/23311835.2018.1431092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the probability density and almost sure asymptotic stability of the coupled Van der Pol oscillator system under the noise excitations are investigated. Through the stochastic averaging method and slow changing process theorem, averaged Fokker–Planck–Kolmogorov equation and exact solution of the dynamical system are obtained. Especially, the marginal density functions of the system excited by the additive white noises are derived. Then, the effects of coupled parameters and noise parameters on the marginal density functions are discussed through the numerical figures. In addition, the almost sure asymptotic stability under the parametric excitation by means of the maximal Lyapunov exponent is studied, and the stable demarcation points about noise intensity are presented.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311835.2018.1431092\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311835.2018.1431092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311835.2018.1431092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文研究了耦合Van der Pol振荡系统在噪声激励下的概率密度和几乎肯定渐近稳定性。通过随机平均法和慢变过程定理,得到了动力系统的平均Fokker–Planck–Kolmogorov方程和精确解。特别推导了系统在加性白噪声激励下的边缘密度函数。然后,通过数值计算讨论了耦合参数和噪声参数对边缘密度函数的影响。此外,利用最大李雅普诺夫指数研究了参数激励下的几乎肯定渐近稳定性,并给出了噪声强度的稳定分界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability density and stochastic stability for the coupled Van der Pol oscillator system
Abstract In this paper, the probability density and almost sure asymptotic stability of the coupled Van der Pol oscillator system under the noise excitations are investigated. Through the stochastic averaging method and slow changing process theorem, averaged Fokker–Planck–Kolmogorov equation and exact solution of the dynamical system are obtained. Especially, the marginal density functions of the system excited by the additive white noises are derived. Then, the effects of coupled parameters and noise parameters on the marginal density functions are discussed through the numerical figures. In addition, the almost sure asymptotic stability under the parametric excitation by means of the maximal Lyapunov exponent is studied, and the stable demarcation points about noise intensity are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信