{"title":"一类二阶混合抛物型双曲方程的位移内边值问题","authors":"Zh.A. Balkizov, Z. Guchaeva, A. Kodzokov","doi":"10.31489/2022m2/59-71","DOIUrl":null,"url":null,"abstract":"This paper investigates inner boundary value problems with a shift for a second-order mixed-hyperbolic equation consisting of a wave operator in one part of the domain and a degenerate hyperbolic operator of the first kind in the other part. We find sufficient conditions for the given functions to ensure the existence of a unique regular solution to the problems under study. In some special cases, solutions are obtained explicitly.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inner boundary value problem with displacement for a second order mixed parabolic-hyperbolic equation\",\"authors\":\"Zh.A. Balkizov, Z. Guchaeva, A. Kodzokov\",\"doi\":\"10.31489/2022m2/59-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates inner boundary value problems with a shift for a second-order mixed-hyperbolic equation consisting of a wave operator in one part of the domain and a degenerate hyperbolic operator of the first kind in the other part. We find sufficient conditions for the given functions to ensure the existence of a unique regular solution to the problems under study. In some special cases, solutions are obtained explicitly.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m2/59-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/59-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inner boundary value problem with displacement for a second order mixed parabolic-hyperbolic equation
This paper investigates inner boundary value problems with a shift for a second-order mixed-hyperbolic equation consisting of a wave operator in one part of the domain and a degenerate hyperbolic operator of the first kind in the other part. We find sufficient conditions for the given functions to ensure the existence of a unique regular solution to the problems under study. In some special cases, solutions are obtained explicitly.