一类带阻尼的分数阶差分方程:振荡性质

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sivakumar Arundhathi, J. Alzabut, V. Muthulakshmi, Hakan Adıgüzel
{"title":"一类带阻尼的分数阶差分方程:振荡性质","authors":"Sivakumar Arundhathi, J. Alzabut, V. Muthulakshmi, Hakan Adıgüzel","doi":"10.1515/dema-2022-0236","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we have investigated the oscillatory properties of the following fractional difference equation: ∇ α + 1 χ ( κ ) ⋅ ∇ α χ ( κ ) − p ( κ ) г ( ∇ α χ ( κ ) ) + q ( κ ) G ∑ μ = κ − α + 1 ∞ ( μ − κ − 1 ) ( − α ) χ ( μ ) = 0 , {\\nabla }^{\\alpha +1}\\chi \\left(\\kappa )\\cdot {\\nabla }^{\\alpha }\\chi \\left(\\kappa )-p\\left(\\kappa )г\\left({\\nabla }^{\\alpha }\\chi \\left(\\kappa ))+q\\left(\\kappa ){\\mathcal{G}}\\left(\\mathop{\\sum }\\limits_{\\mu =\\kappa -\\alpha +1}^{\\infty }{\\left(\\mu -\\kappa -1)}^{\\left(-\\alpha )}\\chi \\left(\\mu )\\right)=0, where κ ∈ N 0 \\kappa \\in {{\\mathbb{N}}}_{0} , ∇ α {\\nabla }^{\\alpha } denotes the Liouville fractional difference operator of order α ∈ ( 0 , 1 ) \\alpha \\in \\left(0,1) , p p , and q q are nonnegative sequences, and г г and G {\\mathcal{G}} are real valued continuous functions, all of which satisfy certain assumptions. Using the generalized Riccati transformation technique, mathematical inequalities, and comparison results, we have found a number of new oscillation results. A few examples have been built up in this context to illustrate the main findings. The conclusion of this study is regarded as an expansion of continuous time to discrete time in fractional contexts.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A certain class of fractional difference equations with damping: Oscillatory properties\",\"authors\":\"Sivakumar Arundhathi, J. Alzabut, V. Muthulakshmi, Hakan Adıgüzel\",\"doi\":\"10.1515/dema-2022-0236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we have investigated the oscillatory properties of the following fractional difference equation: ∇ α + 1 χ ( κ ) ⋅ ∇ α χ ( κ ) − p ( κ ) г ( ∇ α χ ( κ ) ) + q ( κ ) G ∑ μ = κ − α + 1 ∞ ( μ − κ − 1 ) ( − α ) χ ( μ ) = 0 , {\\\\nabla }^{\\\\alpha +1}\\\\chi \\\\left(\\\\kappa )\\\\cdot {\\\\nabla }^{\\\\alpha }\\\\chi \\\\left(\\\\kappa )-p\\\\left(\\\\kappa )г\\\\left({\\\\nabla }^{\\\\alpha }\\\\chi \\\\left(\\\\kappa ))+q\\\\left(\\\\kappa ){\\\\mathcal{G}}\\\\left(\\\\mathop{\\\\sum }\\\\limits_{\\\\mu =\\\\kappa -\\\\alpha +1}^{\\\\infty }{\\\\left(\\\\mu -\\\\kappa -1)}^{\\\\left(-\\\\alpha )}\\\\chi \\\\left(\\\\mu )\\\\right)=0, where κ ∈ N 0 \\\\kappa \\\\in {{\\\\mathbb{N}}}_{0} , ∇ α {\\\\nabla }^{\\\\alpha } denotes the Liouville fractional difference operator of order α ∈ ( 0 , 1 ) \\\\alpha \\\\in \\\\left(0,1) , p p , and q q are nonnegative sequences, and г г and G {\\\\mathcal{G}} are real valued continuous functions, all of which satisfy certain assumptions. Using the generalized Riccati transformation technique, mathematical inequalities, and comparison results, we have found a number of new oscillation results. A few examples have been built up in this context to illustrate the main findings. The conclusion of this study is regarded as an expansion of continuous time to discrete time in fractional contexts.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了分数阶差分方程的振荡性质:∇α χ (κ) - p (κ)↓∇α χ (κ) + q (κ) G∑μ = κ−α + 1∞(μ−κ−1)(−α) χ (μ) = 0,{\nabla ^}{\alpha +1 }\chi\left (\kappa) \cdot{\nabla}{\alpha}\chi\left (\kappa)-p \left (\kappa) \left ({\nabla}{\alpha}\chi\left (\kappa))+q \left (\kappa) {\mathcal{G}}\left (\mathop{\sum }\limits _ {\mu = \kappa -\alpha +1}^{\infty}{\left (\mu - \kappa -1)}^{\left (- \alpha) }\chi\left (\mu) \right)=0,其中κ∈N 0 \kappa\in{{\mathbb{N}}} _0{,∇α }{\nabla ^}{\alpha表示阶α∈(0,1)}\alpha\in\left (0,1), p p,和q q是非负序列,和G {\mathcal{G}}是实值连续函数,它们都满足一定的假设。利用广义Riccati变换技术、数学不等式和比较结果,我们发现了一些新的振荡结果。在这方面建立了几个例子来说明主要发现。本研究的结论被认为是将连续时间扩展到分数环境下的离散时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A certain class of fractional difference equations with damping: Oscillatory properties
Abstract In this study, we have investigated the oscillatory properties of the following fractional difference equation: ∇ α + 1 χ ( κ ) ⋅ ∇ α χ ( κ ) − p ( κ ) г ( ∇ α χ ( κ ) ) + q ( κ ) G ∑ μ = κ − α + 1 ∞ ( μ − κ − 1 ) ( − α ) χ ( μ ) = 0 , {\nabla }^{\alpha +1}\chi \left(\kappa )\cdot {\nabla }^{\alpha }\chi \left(\kappa )-p\left(\kappa )г\left({\nabla }^{\alpha }\chi \left(\kappa ))+q\left(\kappa ){\mathcal{G}}\left(\mathop{\sum }\limits_{\mu =\kappa -\alpha +1}^{\infty }{\left(\mu -\kappa -1)}^{\left(-\alpha )}\chi \left(\mu )\right)=0, where κ ∈ N 0 \kappa \in {{\mathbb{N}}}_{0} , ∇ α {\nabla }^{\alpha } denotes the Liouville fractional difference operator of order α ∈ ( 0 , 1 ) \alpha \in \left(0,1) , p p , and q q are nonnegative sequences, and г г and G {\mathcal{G}} are real valued continuous functions, all of which satisfy certain assumptions. Using the generalized Riccati transformation technique, mathematical inequalities, and comparison results, we have found a number of new oscillation results. A few examples have been built up in this context to illustrate the main findings. The conclusion of this study is regarded as an expansion of continuous time to discrete time in fractional contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信