机械合金化辅助铁基铝基粉末涂层

IF 0.2 Q4 ENGINEERING, MULTIDISCIPLINARY
A. Noviyanto, S. Harjanto, W. Widayatno, A. Wismogroho, M. I. Amal, N. Rochman
{"title":"机械合金化辅助铁基铝基粉末涂层","authors":"A. Noviyanto, S. Harjanto, W. Widayatno, A. Wismogroho, M. I. Amal, N. Rochman","doi":"10.7454/mst.v24i3.3690","DOIUrl":null,"url":null,"abstract":"The coating layer of Fe–Al powders on the steel substrate was prepared by mechanical alloying at room temperature. Fe, Al, and the steel substrates were milled with high-energy ball milling for 32 h with a ball-to-powder ratio of 8 in an argon atmosphere to prevent oxidation during milling. Although mechanical alloying was performed for 32 h, no new phases were observed after mechanical alloying, as analyzed by X-ray diffraction. However, the crystallite size of the milled powders for 32 h decreased by factor two compared with the initial powders. Scanning electron micrographs showed that the coating layers formed >8 h after mechanical alloying. The intermetallic Fe3Al formed after the substrate was annealed at 500 °C.","PeriodicalId":42980,"journal":{"name":"Makara Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical Alloying-assisted Coating of Fe–Al Powders on Steel Substrate\",\"authors\":\"A. Noviyanto, S. Harjanto, W. Widayatno, A. Wismogroho, M. I. Amal, N. Rochman\",\"doi\":\"10.7454/mst.v24i3.3690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coating layer of Fe–Al powders on the steel substrate was prepared by mechanical alloying at room temperature. Fe, Al, and the steel substrates were milled with high-energy ball milling for 32 h with a ball-to-powder ratio of 8 in an argon atmosphere to prevent oxidation during milling. Although mechanical alloying was performed for 32 h, no new phases were observed after mechanical alloying, as analyzed by X-ray diffraction. However, the crystallite size of the milled powders for 32 h decreased by factor two compared with the initial powders. Scanning electron micrographs showed that the coating layers formed >8 h after mechanical alloying. The intermetallic Fe3Al formed after the substrate was annealed at 500 °C.\",\"PeriodicalId\":42980,\"journal\":{\"name\":\"Makara Journal of Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Makara Journal of Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7454/mst.v24i3.3690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/mst.v24i3.3690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在室温下通过机械合金化在钢基体上制备了Fe–Al粉末涂层。Fe、Al和钢基材在氩气气氛中以球粉比为8的高能球磨方式研磨32小时,以防止研磨过程中的氧化。尽管机械合金化进行了32小时,但通过X射线衍射分析,在机械合金化后没有观察到新相。然而,与初始粉末相比,研磨32小时的粉末的晶粒尺寸减小了2倍。扫描电子显微照片显示,涂层在机械合金化后>8h形成。基底在500°C下退火后形成的金属间Fe3Al。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Alloying-assisted Coating of Fe–Al Powders on Steel Substrate
The coating layer of Fe–Al powders on the steel substrate was prepared by mechanical alloying at room temperature. Fe, Al, and the steel substrates were milled with high-energy ball milling for 32 h with a ball-to-powder ratio of 8 in an argon atmosphere to prevent oxidation during milling. Although mechanical alloying was performed for 32 h, no new phases were observed after mechanical alloying, as analyzed by X-ray diffraction. However, the crystallite size of the milled powders for 32 h decreased by factor two compared with the initial powders. Scanning electron micrographs showed that the coating layers formed >8 h after mechanical alloying. The intermetallic Fe3Al formed after the substrate was annealed at 500 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Makara Journal of Technology
Makara Journal of Technology ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信