叶片设计线性化对水平轴风力机气动性能的影响

Q2 Engineering
Imane Echjijem, A. Djebli
{"title":"叶片设计线性化对水平轴风力机气动性能的影响","authors":"Imane Echjijem, A. Djebli","doi":"10.1556/1848.2022.00439","DOIUrl":null,"url":null,"abstract":"\n The optimized chord and twist angle of the preliminary blade design through Blade Element Momentum theory are non-linear distributions, which adds to the complexity of blade manufacture and does not always guarantee the best aerodynamic performance. In this paper, the effect of the linearization on aerodynamic performance using Prandtl-Glauert correction model was investigated through four cases: case 1 and case 2 and case 3, where the chord and the twist angle are linearized and case 4, where sole chord is linearized. The effect of the linearization using Shen correction model while making a comparison to the linearization using Prandtl-Glauert correction model was also studied. The simulation is conducted for S809 wind turbine blade profile. The results show that case 4 using Shen correction model represents the best technique of linearization in terms of higher aerodynamic performance and easy manufacturing process.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of blade design linearization on aerodynamic performance of horizontal axis wind turbine\",\"authors\":\"Imane Echjijem, A. Djebli\",\"doi\":\"10.1556/1848.2022.00439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The optimized chord and twist angle of the preliminary blade design through Blade Element Momentum theory are non-linear distributions, which adds to the complexity of blade manufacture and does not always guarantee the best aerodynamic performance. In this paper, the effect of the linearization on aerodynamic performance using Prandtl-Glauert correction model was investigated through four cases: case 1 and case 2 and case 3, where the chord and the twist angle are linearized and case 4, where sole chord is linearized. The effect of the linearization using Shen correction model while making a comparison to the linearization using Prandtl-Glauert correction model was also studied. The simulation is conducted for S809 wind turbine blade profile. The results show that case 4 using Shen correction model represents the best technique of linearization in terms of higher aerodynamic performance and easy manufacturing process.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2022.00439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2022.00439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

基于叶片单元动量理论的叶片初步设计优化弦角和扭角均为非线性分布,增加了叶片制造的复杂性,并不能保证叶片的最佳气动性能。本文采用Prandtl-Glauert校正模型,通过将弦与扭角线性化的情况1、情况2、情况3和鞋底弦线性化的情况4,研究了线性化对气动性能的影响。研究了Shen校正模型的线性化效果,并与Prandtl-Glauert校正模型的线性化效果进行了比较。对S809型风力机叶片型线进行了仿真。结果表明,采用沈校正模型的案例4具有较高的气动性能和易于制造的优点,是最佳的线性化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of blade design linearization on aerodynamic performance of horizontal axis wind turbine
The optimized chord and twist angle of the preliminary blade design through Blade Element Momentum theory are non-linear distributions, which adds to the complexity of blade manufacture and does not always guarantee the best aerodynamic performance. In this paper, the effect of the linearization on aerodynamic performance using Prandtl-Glauert correction model was investigated through four cases: case 1 and case 2 and case 3, where the chord and the twist angle are linearized and case 4, where sole chord is linearized. The effect of the linearization using Shen correction model while making a comparison to the linearization using Prandtl-Glauert correction model was also studied. The simulation is conducted for S809 wind turbine blade profile. The results show that case 4 using Shen correction model represents the best technique of linearization in terms of higher aerodynamic performance and easy manufacturing process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review of Applied Sciences and Engineering
International Review of Applied Sciences and Engineering Materials Science-Materials Science (miscellaneous)
CiteScore
2.30
自引率
0.00%
发文量
27
审稿时长
46 weeks
期刊介绍: International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信