中红外光谱法和多元分析法追踪摩洛哥藏红花的地理来源

IF 1.1 Q4 CHEMISTRY, ANALYTICAL
Omar Elhamdaoui, A. El Orche, A. Cheikh, K. Laarej, K. Karrouchi, M. El Karbane, M. Bouatia
{"title":"中红外光谱法和多元分析法追踪摩洛哥藏红花的地理来源","authors":"Omar Elhamdaoui, A. El Orche, A. Cheikh, K. Laarej, K. Karrouchi, M. El Karbane, M. Bouatia","doi":"10.30744/brjac.2179-3425.ar-23-2022","DOIUrl":null,"url":null,"abstract":"This work aims to investigate the potential of mid-infrared spectroscopy (MIR) and chemometrics algorithms for the determination of geographical origin and detection of adulteration of Moroccan saffron samples. First, the determination of the geographical origin of five saffron varieties was analyzed by linear discriminant analysis (PCA-LDA) and partial least squares discriminant analysis (PLS-DA). As a result, the developed models correctly classified saffron samples in a subset of external validation with 100% predictive ability. Next, partial least squares regression (PLS-R) was conducted to estimate the amount of adulterants (safflower) in the saffron samples. A good performance was found with Coefficient of Determination (R2) between 0.97 and 0.99. Compared to other techniques, the main advantage of the proposed methods are non-destructive, fast and sensitive which allows to achieve very precise and accurate results.","PeriodicalId":9115,"journal":{"name":"Brazilian Journal of Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracing the Geographical Origin of Moroccan Saffron by Mid-Infrared Spectroscopy and Multivariate Analysis\",\"authors\":\"Omar Elhamdaoui, A. El Orche, A. Cheikh, K. Laarej, K. Karrouchi, M. El Karbane, M. Bouatia\",\"doi\":\"10.30744/brjac.2179-3425.ar-23-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to investigate the potential of mid-infrared spectroscopy (MIR) and chemometrics algorithms for the determination of geographical origin and detection of adulteration of Moroccan saffron samples. First, the determination of the geographical origin of five saffron varieties was analyzed by linear discriminant analysis (PCA-LDA) and partial least squares discriminant analysis (PLS-DA). As a result, the developed models correctly classified saffron samples in a subset of external validation with 100% predictive ability. Next, partial least squares regression (PLS-R) was conducted to estimate the amount of adulterants (safflower) in the saffron samples. A good performance was found with Coefficient of Determination (R2) between 0.97 and 0.99. Compared to other techniques, the main advantage of the proposed methods are non-destructive, fast and sensitive which allows to achieve very precise and accurate results.\",\"PeriodicalId\":9115,\"journal\":{\"name\":\"Brazilian Journal of Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Analytical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30744/brjac.2179-3425.ar-23-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30744/brjac.2179-3425.ar-23-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

摘要

这项工作旨在研究中红外光谱(MIR)和化学计术算法在确定摩洛哥藏红花样品的地理来源和检测掺假方面的潜力。首先,采用线性判别分析(PCA-LDA)和偏最小二乘判别分析(PLS-DA)对5个藏红花品种的地理起源进行了分析。因此,所开发的模型以100%的预测能力将藏红花样本正确地分类在外部验证的子集中。接下来,进行偏最小二乘回归(PLS-R)来估计藏红花样品中掺杂物(红花)的量。发现了良好的性能,测定系数(R2)在0.97和0.99之间。与其他技术相比,所提出的方法的主要优点是无损、快速和灵敏,可以获得非常精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracing the Geographical Origin of Moroccan Saffron by Mid-Infrared Spectroscopy and Multivariate Analysis
This work aims to investigate the potential of mid-infrared spectroscopy (MIR) and chemometrics algorithms for the determination of geographical origin and detection of adulteration of Moroccan saffron samples. First, the determination of the geographical origin of five saffron varieties was analyzed by linear discriminant analysis (PCA-LDA) and partial least squares discriminant analysis (PLS-DA). As a result, the developed models correctly classified saffron samples in a subset of external validation with 100% predictive ability. Next, partial least squares regression (PLS-R) was conducted to estimate the amount of adulterants (safflower) in the saffron samples. A good performance was found with Coefficient of Determination (R2) between 0.97 and 0.99. Compared to other techniques, the main advantage of the proposed methods are non-destructive, fast and sensitive which allows to achieve very precise and accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
46
期刊介绍: BrJAC is dedicated to the diffusion of significant and original knowledge in all branches of Analytical Chemistry, and is addressed to professionals involved in science, technology and innovation projects at universities, research centers and in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信