波导中的非齐次亥姆霍兹方程。能量法的存在性和唯一性结果

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
B. Schweizer
{"title":"波导中的非齐次亥姆霍兹方程。能量法的存在性和唯一性结果","authors":"B. Schweizer","doi":"10.1017/s0956792522000080","DOIUrl":null,"url":null,"abstract":"The Helmholtz equation \n \n \n \n$-\\nabla\\cdot (a\\nabla u) - \\omega^2 u = f$\n\n \n is considered in an unbounded wave guide \n \n \n \n$\\Omega := \\mathbb{R} \\times S \\subset \\mathbb{R}^d$\n\n \n , \n \n \n \n$S\\subset \\mathbb{R}^{d-1}$\n\n \n a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction \n \n \n \n$x_1 \\in \\mathbb{R}$\n\n \n or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies \n \n \n \n$\\omega$\n\n \n , we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhomogeneous Helmholtz equations in wave guides – existence and uniqueness results with energy methods\",\"authors\":\"B. Schweizer\",\"doi\":\"10.1017/s0956792522000080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Helmholtz equation \\n \\n \\n \\n$-\\\\nabla\\\\cdot (a\\\\nabla u) - \\\\omega^2 u = f$\\n\\n \\n is considered in an unbounded wave guide \\n \\n \\n \\n$\\\\Omega := \\\\mathbb{R} \\\\times S \\\\subset \\\\mathbb{R}^d$\\n\\n \\n , \\n \\n \\n \\n$S\\\\subset \\\\mathbb{R}^{d-1}$\\n\\n \\n a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction \\n \\n \\n \\n$x_1 \\\\in \\\\mathbb{R}$\\n\\n \\n or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies \\n \\n \\n \\n$\\\\omega$\\n\\n \\n , we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792522000080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792522000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Helmholtz方程$-\nabla\cdot(a\nablau)-\omega^2 u=f$在无界波导$\omega:=\mathbb{R}\times S\subet \mathbb{R}^d$中被认为是有界域。系数a是严格椭圆的,在无界方向$x_1\in\mathbb{R}$上是周期性的,或者在紧子集外是周期性;在后一种情况下,可以在两个无界方向上使用两种不同的周期性介质。对于非奇异频率$\omega$,我们证明了解u的存在。虽然以前对这些结果的证明是基于算子理论中的分析性论点,但这里只使用能量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhomogeneous Helmholtz equations in wave guides – existence and uniqueness results with energy methods
The Helmholtz equation $-\nabla\cdot (a\nabla u) - \omega^2 u = f$ is considered in an unbounded wave guide $\Omega := \mathbb{R} \times S \subset \mathbb{R}^d$ , $S\subset \mathbb{R}^{d-1}$ a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction $x_1 \in \mathbb{R}$ or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies $\omega$ , we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信