Belinskaya定理是最优的

Pub Date : 2022-01-17 DOI:10.4064/fm266-4-2023
A. Carderi, Matthieu Joseph, F. L. Maitre, R. Tessera
{"title":"Belinskaya定理是最优的","authors":"A. Carderi, Matthieu Joseph, F. L. Maitre, R. Tessera","doi":"10.4064/fm266-4-2023","DOIUrl":null,"url":null,"abstract":"Belinskaya's theorem states that given an ergodic measure-preserving transformation, any other transformation with the same orbits and an $\\mathrm{L}^1$ cocycle must be flip-conjugate to it. Our main result shows that this theorem is optimal: for all $p<1$ the integrability condition on the cocycle cannot be relaxed to being in $\\mathrm{L}^p$. This also allows us to answer a question of Kerr and Li: for ergodic measure-preserving transformations, Shannon orbit equivalence doesn't boil down to flip-conjugacy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Belinskaya’s theorem is optimal\",\"authors\":\"A. Carderi, Matthieu Joseph, F. L. Maitre, R. Tessera\",\"doi\":\"10.4064/fm266-4-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Belinskaya's theorem states that given an ergodic measure-preserving transformation, any other transformation with the same orbits and an $\\\\mathrm{L}^1$ cocycle must be flip-conjugate to it. Our main result shows that this theorem is optimal: for all $p<1$ the integrability condition on the cocycle cannot be relaxed to being in $\\\\mathrm{L}^p$. This also allows us to answer a question of Kerr and Li: for ergodic measure-preserving transformations, Shannon orbit equivalence doesn't boil down to flip-conjugacy.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm266-4-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm266-4-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Belinskaya定理指出,给定一个遍历测度保持变换,任何其他具有相同轨道和$\mathrm{L}^1$共循环的变换都必须与其翻转共轭。我们的主要结果表明,该定理是最优的:对于所有$p<1$,共循环上的可积条件不能放松为在$\mathrm{L}^ p$中。这也让我们能够回答Kerr和Li的一个问题:对于遍历测度保持变换,Shannon轨道等价不归结为翻转共轭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Belinskaya’s theorem is optimal
Belinskaya's theorem states that given an ergodic measure-preserving transformation, any other transformation with the same orbits and an $\mathrm{L}^1$ cocycle must be flip-conjugate to it. Our main result shows that this theorem is optimal: for all $p<1$ the integrability condition on the cocycle cannot be relaxed to being in $\mathrm{L}^p$. This also allows us to answer a question of Kerr and Li: for ergodic measure-preserving transformations, Shannon orbit equivalence doesn't boil down to flip-conjugacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信