基于应力集中因子的磨损管塌陷的广义经验表达式

IF 1.3 4区 工程技术 Q3 ENGINEERING, PETROLEUM
A. Teigland, B. Brechan, S. Dale, S. Sangesland
{"title":"基于应力集中因子的磨损管塌陷的广义经验表达式","authors":"A. Teigland, B. Brechan, S. Dale, S. Sangesland","doi":"10.2118/205500-PA","DOIUrl":null,"url":null,"abstract":"\n As wells in modern operations are getting longer and more complex, assessing the effect of casing wear becomes ever more crucial. Degradation of the tubulars through mechanical wear reduces the pressure capacity significantly. In this paper, we use the finite element method (FEM) to analyze the stress distribution in degraded geometries and to assess reduction in collapse strength. A model for the collapse strength of the casing with a crescent-shaped wear groove is developed and its performance evaluated in relation to experimental data. The model was created by using the Buckingham Pi theorem to make generalized empirical expressions for yield and elastic collapse of tubulars. Finite element analysis (FEA) of 135 geometries was used in the development of the model. The results show that the generalized expressions capture the trends observed in the FEA accurately and match the experimental data from six tubular collapse tests with an average relative difference in collapse pressure of 5.2%.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Generalized Empirical Expression for Collapse of Worn Tubulars Using Stress Concentration Factors\",\"authors\":\"A. Teigland, B. Brechan, S. Dale, S. Sangesland\",\"doi\":\"10.2118/205500-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As wells in modern operations are getting longer and more complex, assessing the effect of casing wear becomes ever more crucial. Degradation of the tubulars through mechanical wear reduces the pressure capacity significantly. In this paper, we use the finite element method (FEM) to analyze the stress distribution in degraded geometries and to assess reduction in collapse strength. A model for the collapse strength of the casing with a crescent-shaped wear groove is developed and its performance evaluated in relation to experimental data. The model was created by using the Buckingham Pi theorem to make generalized empirical expressions for yield and elastic collapse of tubulars. Finite element analysis (FEA) of 135 geometries was used in the development of the model. The results show that the generalized expressions capture the trends observed in the FEA accurately and match the experimental data from six tubular collapse tests with an average relative difference in collapse pressure of 5.2%.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/205500-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/205500-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 3

摘要

随着现代作业中的油井越来越长、越来越复杂,评估套管磨损的影响变得越来越重要。由于机械磨损导致的管材劣化大大降低了承压能力。在本文中,我们使用有限元方法(FEM)来分析退化几何结构中的应力分布,并评估破坏强度的降低。建立了带月牙形磨损槽套管的抗塌强度模型,并结合实验数据对其性能进行了评价。利用Buckingham Pi定理建立了管材屈服和弹性坍塌的广义经验表达式。模型的建立采用了135种几何形状的有限元分析(FEA)。结果表明,广义表达式较好地反映了有限元分析的趋势,与6个管状破坏试验数据吻合,平均相对破坏压力差为5.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized Empirical Expression for Collapse of Worn Tubulars Using Stress Concentration Factors
As wells in modern operations are getting longer and more complex, assessing the effect of casing wear becomes ever more crucial. Degradation of the tubulars through mechanical wear reduces the pressure capacity significantly. In this paper, we use the finite element method (FEM) to analyze the stress distribution in degraded geometries and to assess reduction in collapse strength. A model for the collapse strength of the casing with a crescent-shaped wear groove is developed and its performance evaluated in relation to experimental data. The model was created by using the Buckingham Pi theorem to make generalized empirical expressions for yield and elastic collapse of tubulars. Finite element analysis (FEA) of 135 geometries was used in the development of the model. The results show that the generalized expressions capture the trends observed in the FEA accurately and match the experimental data from six tubular collapse tests with an average relative difference in collapse pressure of 5.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Drilling & Completion
SPE Drilling & Completion 工程技术-工程:石油
CiteScore
4.20
自引率
7.10%
发文量
29
审稿时长
6-12 weeks
期刊介绍: Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信