Nur Zafirah Mat Razali, K. A. Mustapha, M. Z. Kashim, Muhammad Shahir Misnan, S. S. Md Shah, Zainol Affendi Abu Bakar
{"title":"马来西亚东部近海砂拉越盆地枯竭气田CO2注入的临界速率分析","authors":"Nur Zafirah Mat Razali, K. A. Mustapha, M. Z. Kashim, Muhammad Shahir Misnan, S. S. Md Shah, Zainol Affendi Abu Bakar","doi":"10.1080/17583004.2022.2074312","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to address the challenges and strategies to determine the critical rate of CO2 injection into a carbonate depleted gas field. In this research, the critical rate is the maximum allowable injection rate before formation damage initiation. The cause of formation damage could be due to in-situ mobilization or trapping of migratory fines resulting in plugging the flow path. This study performed a thorough investigation of a different rock-fluid system to evaluate the safe injection limit, as the critical rate is different for each rock-fluid system. The geochemical effect of CO2 injection toward carbonate formation was also investigated in this research. Other than that, the porosity and permeability changes due to CO2-brine-rock multiphase flow characteristics were considered to understand the feasibility of CO2 sequestration into carbonate formation. This research discussed experimental design to mimic the CO2 injection scenario of CO2 into carbonate depleted gas field. Therefore, several core flooding experiments were conducted under reservoir conditions using representative native cores, CO2, and synthetic formation brine. Abrupt changes in differential pressure (ΔP), analysis of effluent collected after CO2 multi-rate flow, and pH reading are the key indicators to consider that the condition has reached a critical rate. The experimental result demonstrated the existence of fines migration, scale formation, and salt precipitation after the core was subjected to supercritical CO2 multi-rate flow. Considering these issues and challenges associated with injectivity, this study recommended a maximum injection rate prior to field scale injection.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical rate analysis for CO2 injection in depleted gas field, Sarawak Basin, offshore East Malaysia\",\"authors\":\"Nur Zafirah Mat Razali, K. A. Mustapha, M. Z. Kashim, Muhammad Shahir Misnan, S. S. Md Shah, Zainol Affendi Abu Bakar\",\"doi\":\"10.1080/17583004.2022.2074312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aimed to address the challenges and strategies to determine the critical rate of CO2 injection into a carbonate depleted gas field. In this research, the critical rate is the maximum allowable injection rate before formation damage initiation. The cause of formation damage could be due to in-situ mobilization or trapping of migratory fines resulting in plugging the flow path. This study performed a thorough investigation of a different rock-fluid system to evaluate the safe injection limit, as the critical rate is different for each rock-fluid system. The geochemical effect of CO2 injection toward carbonate formation was also investigated in this research. Other than that, the porosity and permeability changes due to CO2-brine-rock multiphase flow characteristics were considered to understand the feasibility of CO2 sequestration into carbonate formation. This research discussed experimental design to mimic the CO2 injection scenario of CO2 into carbonate depleted gas field. Therefore, several core flooding experiments were conducted under reservoir conditions using representative native cores, CO2, and synthetic formation brine. Abrupt changes in differential pressure (ΔP), analysis of effluent collected after CO2 multi-rate flow, and pH reading are the key indicators to consider that the condition has reached a critical rate. The experimental result demonstrated the existence of fines migration, scale formation, and salt precipitation after the core was subjected to supercritical CO2 multi-rate flow. Considering these issues and challenges associated with injectivity, this study recommended a maximum injection rate prior to field scale injection.\",\"PeriodicalId\":48941,\"journal\":{\"name\":\"Carbon Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/17583004.2022.2074312\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2022.2074312","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Critical rate analysis for CO2 injection in depleted gas field, Sarawak Basin, offshore East Malaysia
Abstract This study aimed to address the challenges and strategies to determine the critical rate of CO2 injection into a carbonate depleted gas field. In this research, the critical rate is the maximum allowable injection rate before formation damage initiation. The cause of formation damage could be due to in-situ mobilization or trapping of migratory fines resulting in plugging the flow path. This study performed a thorough investigation of a different rock-fluid system to evaluate the safe injection limit, as the critical rate is different for each rock-fluid system. The geochemical effect of CO2 injection toward carbonate formation was also investigated in this research. Other than that, the porosity and permeability changes due to CO2-brine-rock multiphase flow characteristics were considered to understand the feasibility of CO2 sequestration into carbonate formation. This research discussed experimental design to mimic the CO2 injection scenario of CO2 into carbonate depleted gas field. Therefore, several core flooding experiments were conducted under reservoir conditions using representative native cores, CO2, and synthetic formation brine. Abrupt changes in differential pressure (ΔP), analysis of effluent collected after CO2 multi-rate flow, and pH reading are the key indicators to consider that the condition has reached a critical rate. The experimental result demonstrated the existence of fines migration, scale formation, and salt precipitation after the core was subjected to supercritical CO2 multi-rate flow. Considering these issues and challenges associated with injectivity, this study recommended a maximum injection rate prior to field scale injection.
期刊介绍:
Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology.
The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices.
One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.