{"title":"基于时空信息集成方法的分布式光伏发电功率预测研究","authors":"Xiyun Yang, Zeyu Zhao, Yan Peng, Junchao Ma","doi":"10.1063/5.0150186","DOIUrl":null,"url":null,"abstract":"Distributed photovoltaic power generation can efficiently utilize idle resources and reduce carbon emissions. In order to reduce the impact of grid-connected distributed photovoltaic power fluctuations on grid operation, this paper simultaneously exploits the temporal dependence of power series and the spatial correlation of meteorological data to propose a combined prediction model with temporal characteristics and spatial relationships fused for distributed photovoltaic power plants with spatiotemporal information. First, in the study of time-dependent prediction, we propose a long and short-term memory neural network ensemble prediction model based on genetic algorithm-natural gradient boosting, which efficiently fits multiple sets of temporal characteristics of distributed photovoltaic. In the study of spatial correlation prediction, the meteorological data affecting photovoltaic power generation are selected by κ correlation coefficients, the target power plant and spatial reference power plant meteorological data are reconstructed into a two-dimensional matrix, and a two-dimensional convolutional neural network spatial feature extraction power prediction model is designed. Finally, the advantages of the two prediction models of temporal information and spatial features are fused by multiple error evaluation criteria improved information entropy, and a distributed photovoltaic power plant is constructed and implements highly accurate spatiotemporal information combination prediction model. The effect of the forecasting model in this study is validated using the photovoltaic cluster dataset in Hebei Province, China. Compared with other models, the results of this study show that the five prediction performance evaluation metrics of the proposed combined spatiotemporal information model are better.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on distributed photovoltaic power prediction based on spatiotemporal information ensemble method\",\"authors\":\"Xiyun Yang, Zeyu Zhao, Yan Peng, Junchao Ma\",\"doi\":\"10.1063/5.0150186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed photovoltaic power generation can efficiently utilize idle resources and reduce carbon emissions. In order to reduce the impact of grid-connected distributed photovoltaic power fluctuations on grid operation, this paper simultaneously exploits the temporal dependence of power series and the spatial correlation of meteorological data to propose a combined prediction model with temporal characteristics and spatial relationships fused for distributed photovoltaic power plants with spatiotemporal information. First, in the study of time-dependent prediction, we propose a long and short-term memory neural network ensemble prediction model based on genetic algorithm-natural gradient boosting, which efficiently fits multiple sets of temporal characteristics of distributed photovoltaic. In the study of spatial correlation prediction, the meteorological data affecting photovoltaic power generation are selected by κ correlation coefficients, the target power plant and spatial reference power plant meteorological data are reconstructed into a two-dimensional matrix, and a two-dimensional convolutional neural network spatial feature extraction power prediction model is designed. Finally, the advantages of the two prediction models of temporal information and spatial features are fused by multiple error evaluation criteria improved information entropy, and a distributed photovoltaic power plant is constructed and implements highly accurate spatiotemporal information combination prediction model. The effect of the forecasting model in this study is validated using the photovoltaic cluster dataset in Hebei Province, China. Compared with other models, the results of this study show that the five prediction performance evaluation metrics of the proposed combined spatiotemporal information model are better.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0150186\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0150186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Research on distributed photovoltaic power prediction based on spatiotemporal information ensemble method
Distributed photovoltaic power generation can efficiently utilize idle resources and reduce carbon emissions. In order to reduce the impact of grid-connected distributed photovoltaic power fluctuations on grid operation, this paper simultaneously exploits the temporal dependence of power series and the spatial correlation of meteorological data to propose a combined prediction model with temporal characteristics and spatial relationships fused for distributed photovoltaic power plants with spatiotemporal information. First, in the study of time-dependent prediction, we propose a long and short-term memory neural network ensemble prediction model based on genetic algorithm-natural gradient boosting, which efficiently fits multiple sets of temporal characteristics of distributed photovoltaic. In the study of spatial correlation prediction, the meteorological data affecting photovoltaic power generation are selected by κ correlation coefficients, the target power plant and spatial reference power plant meteorological data are reconstructed into a two-dimensional matrix, and a two-dimensional convolutional neural network spatial feature extraction power prediction model is designed. Finally, the advantages of the two prediction models of temporal information and spatial features are fused by multiple error evaluation criteria improved information entropy, and a distributed photovoltaic power plant is constructed and implements highly accurate spatiotemporal information combination prediction model. The effect of the forecasting model in this study is validated using the photovoltaic cluster dataset in Hebei Province, China. Compared with other models, the results of this study show that the five prediction performance evaluation metrics of the proposed combined spatiotemporal information model are better.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy