在聚酯织物上集成纳米复合整理,增强紫外线防护、性能和舒适性

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
S. A. Abo El-Ola, M. Elshakankery, R. Kotb
{"title":"在聚酯织物上集成纳米复合整理,增强紫外线防护、性能和舒适性","authors":"S. A. Abo El-Ola, M. Elshakankery, R. Kotb","doi":"10.1177/15589250221119447","DOIUrl":null,"url":null,"abstract":"This research focuses on the integration between functional finishing and the performance properties of polyester fabric for comfortable clothes. The effects of nanofinishing (zinc oxide nanoparticles and nano-polyurethane nanocomposite) on the ultraviolet protection properties of polyester fabric, the whiteness index, and the Kawabata Evaluation System were studied. Under the optimum finishing conditions, excellent protection (150) was achieved at lower concentrations of the nanocomposite, and zinc oxide nanoparticles individually enhanced the whiteness index (73). The results of the Kawabata Evaluation System showed that the finishing processes improved mechanical and performance properties (tensile, shearing, bending, compression, surface roughness, thermal, and hand properties), indicating that all the finished fabrics offered enhanced functionality, thermal and comfort properties. Enhanced total hand value properties (3.7 for summer and 5.1 for winter) were realized by finishing, assuming the finished fabrics were applied to men’s shirts and women’s dresses for summer and winter apparel. Scanning electron microscopy and energy disperse X-ray spectroscopy analyses showed a uniform layer of zinc oxide nanoparticles and nano polyurethane on the fiber surface. Fourier transform infrared spectroscopy confirmed the structural changes in the finished fabric.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integration of nanocomposite finishing on polyester fabric for enhanced UV protection, performance, and comfort properties\",\"authors\":\"S. A. Abo El-Ola, M. Elshakankery, R. Kotb\",\"doi\":\"10.1177/15589250221119447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on the integration between functional finishing and the performance properties of polyester fabric for comfortable clothes. The effects of nanofinishing (zinc oxide nanoparticles and nano-polyurethane nanocomposite) on the ultraviolet protection properties of polyester fabric, the whiteness index, and the Kawabata Evaluation System were studied. Under the optimum finishing conditions, excellent protection (150) was achieved at lower concentrations of the nanocomposite, and zinc oxide nanoparticles individually enhanced the whiteness index (73). The results of the Kawabata Evaluation System showed that the finishing processes improved mechanical and performance properties (tensile, shearing, bending, compression, surface roughness, thermal, and hand properties), indicating that all the finished fabrics offered enhanced functionality, thermal and comfort properties. Enhanced total hand value properties (3.7 for summer and 5.1 for winter) were realized by finishing, assuming the finished fabrics were applied to men’s shirts and women’s dresses for summer and winter apparel. Scanning electron microscopy and energy disperse X-ray spectroscopy analyses showed a uniform layer of zinc oxide nanoparticles and nano polyurethane on the fiber surface. Fourier transform infrared spectroscopy confirmed the structural changes in the finished fabric.\",\"PeriodicalId\":15718,\"journal\":{\"name\":\"Journal of Engineered Fibers and Fabrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineered Fibers and Fabrics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15589250221119447\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250221119447","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 2

摘要

本研究的重点是将涤纶织物的功能整理与舒适服装的性能性能相结合。研究了纳米涂层(氧化锌纳米颗粒和纳米聚氨酯纳米复合材料)对聚酯织物紫外线防护性能、白度指数和Kawabata评价系统的影响。在最佳整理条件下,在较低浓度的纳米复合材料下获得了优异的保护(150),并且氧化锌纳米颗粒单独提高了白度指数(73)。Kawabata评估系统的结果表明,整理工艺改善了机械性能和性能(拉伸、剪切、弯曲、压缩、表面粗糙度、热性能和手部性能),表明所有整理织物都具有增强的功能性、热特性和舒适性。假设成品织物适用于夏季和冬季服装的男式衬衫和女式连衣裙,则通过精加工实现了总手工价值的提高(夏季为3.7,冬季为5.1)。扫描电子显微镜和能量分散X射线光谱分析显示,纤维表面有一层均匀的氧化锌纳米颗粒和纳米聚氨酯。傅立叶变换红外光谱证实了成品织物的结构变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of nanocomposite finishing on polyester fabric for enhanced UV protection, performance, and comfort properties
This research focuses on the integration between functional finishing and the performance properties of polyester fabric for comfortable clothes. The effects of nanofinishing (zinc oxide nanoparticles and nano-polyurethane nanocomposite) on the ultraviolet protection properties of polyester fabric, the whiteness index, and the Kawabata Evaluation System were studied. Under the optimum finishing conditions, excellent protection (150) was achieved at lower concentrations of the nanocomposite, and zinc oxide nanoparticles individually enhanced the whiteness index (73). The results of the Kawabata Evaluation System showed that the finishing processes improved mechanical and performance properties (tensile, shearing, bending, compression, surface roughness, thermal, and hand properties), indicating that all the finished fabrics offered enhanced functionality, thermal and comfort properties. Enhanced total hand value properties (3.7 for summer and 5.1 for winter) were realized by finishing, assuming the finished fabrics were applied to men’s shirts and women’s dresses for summer and winter apparel. Scanning electron microscopy and energy disperse X-ray spectroscopy analyses showed a uniform layer of zinc oxide nanoparticles and nano polyurethane on the fiber surface. Fourier transform infrared spectroscopy confirmed the structural changes in the finished fabric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信