Andrea Agiollo, Andrea Rafanelli, Matteo Magnini, Giovanni Ciatto, Andrea Omicini
{"title":"符号知识注入与智能代理:QoS度量和实验","authors":"Andrea Agiollo, Andrea Rafanelli, Matteo Magnini, Giovanni Ciatto, Andrea Omicini","doi":"10.1007/s10458-023-09609-6","DOIUrl":null,"url":null,"abstract":"<div><p>Bridging intelligent symbolic agents and sub-symbolic predictors is a long-standing research goal in AI. Among the recent integration efforts, symbolic knowledge injection (SKI) proposes algorithms aimed at steering sub-symbolic predictors’ learning towards compliance w.r.t. pre-existing symbolic knowledge bases. However, state-of-the-art contributions about SKI mostly tackle injection from a foundational perspective, often focussing solely on improving the predictive performance of the sub-symbolic predictors undergoing injection. Technical contributions, in turn, are tailored on individual methods/experiments and therefore poorly interoperable with agent technologies as well as among each others. Intelligent agents may exploit SKI to serve many purposes other than predictive performance alone—provided that, of course, adequate technological support exists: for instance, SKI may allow agents to tune computational, energetic, or data requirements of sub-symbolic predictors. Given that different algorithms may exist to serve all those many purposes, some criteria for <i>algorithm selection</i> as well as a suitable <i>technology</i> should be available to let agents dynamically select and exploit the most suitable algorithm for the problem at hand. Along this line, in this work we design a set of <i>quality-of-service</i> (QoS) <i>metrics</i> for SKI, and a <i>general-purpose software API</i> to enable their application to various SKI algorithms—namely, platform for symbolic knowledge injection (PSyKI). We provide an abstract formulation of four QoS metrics for SKI, and describe the design of PSyKI according to a software engineering perspective. Then we discuss how our QoS metrics are supported by PSyKI. Finally, we demonstrate the effectiveness of both our QoS metrics and PSyKI via a number of experiments, where SKI is both applied and assessed via our proposed API. Our empirical analysis demonstrates both the soundness of our proposed metrics and the versatility of PSyKI as the first software tool supporting the application, interchange, and numerical assessment of SKI techniques. To the best of our knowledge, our proposals represent the first attempt to introduce QoS metrics for SKI, and the software tools enabling their <i>practical</i> exploitation for both human and computational agents. In particular, our contributions could be exploited to automate and/or compare the manifold SKI algorithms from the state of the art. Hence moving a concrete step forward the engineering of efficient, robust, and trustworthy software applications that integrate symbolic agents and sub-symbolic predictors.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-023-09609-6.pdf","citationCount":"2","resultStr":"{\"title\":\"Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments\",\"authors\":\"Andrea Agiollo, Andrea Rafanelli, Matteo Magnini, Giovanni Ciatto, Andrea Omicini\",\"doi\":\"10.1007/s10458-023-09609-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bridging intelligent symbolic agents and sub-symbolic predictors is a long-standing research goal in AI. Among the recent integration efforts, symbolic knowledge injection (SKI) proposes algorithms aimed at steering sub-symbolic predictors’ learning towards compliance w.r.t. pre-existing symbolic knowledge bases. However, state-of-the-art contributions about SKI mostly tackle injection from a foundational perspective, often focussing solely on improving the predictive performance of the sub-symbolic predictors undergoing injection. Technical contributions, in turn, are tailored on individual methods/experiments and therefore poorly interoperable with agent technologies as well as among each others. Intelligent agents may exploit SKI to serve many purposes other than predictive performance alone—provided that, of course, adequate technological support exists: for instance, SKI may allow agents to tune computational, energetic, or data requirements of sub-symbolic predictors. Given that different algorithms may exist to serve all those many purposes, some criteria for <i>algorithm selection</i> as well as a suitable <i>technology</i> should be available to let agents dynamically select and exploit the most suitable algorithm for the problem at hand. Along this line, in this work we design a set of <i>quality-of-service</i> (QoS) <i>metrics</i> for SKI, and a <i>general-purpose software API</i> to enable their application to various SKI algorithms—namely, platform for symbolic knowledge injection (PSyKI). We provide an abstract formulation of four QoS metrics for SKI, and describe the design of PSyKI according to a software engineering perspective. Then we discuss how our QoS metrics are supported by PSyKI. Finally, we demonstrate the effectiveness of both our QoS metrics and PSyKI via a number of experiments, where SKI is both applied and assessed via our proposed API. Our empirical analysis demonstrates both the soundness of our proposed metrics and the versatility of PSyKI as the first software tool supporting the application, interchange, and numerical assessment of SKI techniques. To the best of our knowledge, our proposals represent the first attempt to introduce QoS metrics for SKI, and the software tools enabling their <i>practical</i> exploitation for both human and computational agents. In particular, our contributions could be exploited to automate and/or compare the manifold SKI algorithms from the state of the art. Hence moving a concrete step forward the engineering of efficient, robust, and trustworthy software applications that integrate symbolic agents and sub-symbolic predictors.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10458-023-09609-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-023-09609-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09609-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments
Bridging intelligent symbolic agents and sub-symbolic predictors is a long-standing research goal in AI. Among the recent integration efforts, symbolic knowledge injection (SKI) proposes algorithms aimed at steering sub-symbolic predictors’ learning towards compliance w.r.t. pre-existing symbolic knowledge bases. However, state-of-the-art contributions about SKI mostly tackle injection from a foundational perspective, often focussing solely on improving the predictive performance of the sub-symbolic predictors undergoing injection. Technical contributions, in turn, are tailored on individual methods/experiments and therefore poorly interoperable with agent technologies as well as among each others. Intelligent agents may exploit SKI to serve many purposes other than predictive performance alone—provided that, of course, adequate technological support exists: for instance, SKI may allow agents to tune computational, energetic, or data requirements of sub-symbolic predictors. Given that different algorithms may exist to serve all those many purposes, some criteria for algorithm selection as well as a suitable technology should be available to let agents dynamically select and exploit the most suitable algorithm for the problem at hand. Along this line, in this work we design a set of quality-of-service (QoS) metrics for SKI, and a general-purpose software API to enable their application to various SKI algorithms—namely, platform for symbolic knowledge injection (PSyKI). We provide an abstract formulation of four QoS metrics for SKI, and describe the design of PSyKI according to a software engineering perspective. Then we discuss how our QoS metrics are supported by PSyKI. Finally, we demonstrate the effectiveness of both our QoS metrics and PSyKI via a number of experiments, where SKI is both applied and assessed via our proposed API. Our empirical analysis demonstrates both the soundness of our proposed metrics and the versatility of PSyKI as the first software tool supporting the application, interchange, and numerical assessment of SKI techniques. To the best of our knowledge, our proposals represent the first attempt to introduce QoS metrics for SKI, and the software tools enabling their practical exploitation for both human and computational agents. In particular, our contributions could be exploited to automate and/or compare the manifold SKI algorithms from the state of the art. Hence moving a concrete step forward the engineering of efficient, robust, and trustworthy software applications that integrate symbolic agents and sub-symbolic predictors.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.