关于稠密集确定的函数

IF 0.1 Q4 MATHEMATICS
Nicholas P. M. Kayban, Xianfu Wang
{"title":"关于稠密集确定的函数","authors":"Nicholas P. M. Kayban, Xianfu Wang","doi":"10.14321/REALANALEXCH.46.2.0423","DOIUrl":null,"url":null,"abstract":"We show that a few basic classes of lower semicontinuous functions on ℝn are densely recoverable. Specifically, we show that the sum of a convex and a continuous function, the difference of two convex and lower semicontinuous functions, a K-increasing function (where K is a cone of nonempty interior), and differences of K-increasing functions are all functions uniquely determined by their values on a dense set in ℝn. Thus, sets of such functions of each type are densely recoverable sets. In general, the sum and difference of two densely recoverable sets of functions is shown to not be densely recoverable.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON FUNCTIONS DETERMINED BY DENSE SETS\",\"authors\":\"Nicholas P. M. Kayban, Xianfu Wang\",\"doi\":\"10.14321/REALANALEXCH.46.2.0423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a few basic classes of lower semicontinuous functions on ℝn are densely recoverable. Specifically, we show that the sum of a convex and a continuous function, the difference of two convex and lower semicontinuous functions, a K-increasing function (where K is a cone of nonempty interior), and differences of K-increasing functions are all functions uniquely determined by their values on a dense set in ℝn. Thus, sets of such functions of each type are densely recoverable sets. In general, the sum and difference of two densely recoverable sets of functions is shown to not be densely recoverable.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/REALANALEXCH.46.2.0423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.46.2.0423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了上的几个下半连续函数的基本类ℝn是密集可采的。具体地说,我们证明了凸函数和连续函数的和、凸函数和下半连续函数的差、K增加函数(其中K是非空内部的锥)和K增加函数的差都是由它们在ℝn.因此,每种类型的这种函数的集合都是稠密可恢复集合。通常,两个稠密可恢复函数集的和和和差被证明是不稠密可恢复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON FUNCTIONS DETERMINED BY DENSE SETS
We show that a few basic classes of lower semicontinuous functions on ℝn are densely recoverable. Specifically, we show that the sum of a convex and a continuous function, the difference of two convex and lower semicontinuous functions, a K-increasing function (where K is a cone of nonempty interior), and differences of K-increasing functions are all functions uniquely determined by their values on a dense set in ℝn. Thus, sets of such functions of each type are densely recoverable sets. In general, the sum and difference of two densely recoverable sets of functions is shown to not be densely recoverable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信