{"title":"自同构群的拓扑动力学:一个模型论的视角","authors":"Krzysztof Krupiński, Anand Pillay","doi":"10.1007/s00153-022-00850-6","DOIUrl":null,"url":null,"abstract":"<div><p>We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorčević theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the universal ambit as a certain space of types in an expanded language. Using this, we recover results of Kechris et al. (Funct Anal 15:106–189, 2005), Moore (Fund Math 220:263–280, 2013), Ngyuen Van Thé (Fund Math 222: 19–47, 2013), in the context of automorphism groups of not necessarily countable structures, as well as Zucker (Trans Am Math Soc 368, 6715–6740, 2016).</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"62 3-4","pages":"505 - 529"},"PeriodicalIF":0.3000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-022-00850-6.pdf","citationCount":"8","resultStr":"{\"title\":\"On the topological dynamics of automorphism groups: a model-theoretic perspective\",\"authors\":\"Krzysztof Krupiński, Anand Pillay\",\"doi\":\"10.1007/s00153-022-00850-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorčević theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the universal ambit as a certain space of types in an expanded language. Using this, we recover results of Kechris et al. (Funct Anal 15:106–189, 2005), Moore (Fund Math 220:263–280, 2013), Ngyuen Van Thé (Fund Math 222: 19–47, 2013), in the context of automorphism groups of not necessarily countable structures, as well as Zucker (Trans Am Math Soc 368, 6715–6740, 2016).</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"62 3-4\",\"pages\":\"505 - 529\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-022-00850-6.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-022-00850-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-022-00850-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 8
摘要
在不一定可数结构的自同构群的更一般的背景下,我们给出了kechris - pestov - todor eviki理论的基本结果的模型理论处理。其中一个要点是将通用范围描述为扩展语言中的特定类型空间。利用这一点,我们恢复了Kechris等人(Funct Anal 15:106-189, 2005), Moore (Fund Math 220:263-280, 2013), Ngyuen Van th (Fund Math 222: 19-47, 2013)在不一定可数结构的自同构群背景下的结果,以及Zucker (Trans Am Math Soc 368, 6715-6740, 2016)。
On the topological dynamics of automorphism groups: a model-theoretic perspective
We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorčević theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the universal ambit as a certain space of types in an expanded language. Using this, we recover results of Kechris et al. (Funct Anal 15:106–189, 2005), Moore (Fund Math 220:263–280, 2013), Ngyuen Van Thé (Fund Math 222: 19–47, 2013), in the context of automorphism groups of not necessarily countable structures, as well as Zucker (Trans Am Math Soc 368, 6715–6740, 2016).
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.