{"title":"评论“新冠肺炎大流行影响的临床试验的估计及其估计:NISS Ingram Olkin论坛系列关于计划外临床试验中断的报告”","authors":"S. Vansteelandt","doi":"10.1080/19466315.2022.2128405","DOIUrl":null,"url":null,"abstract":"I would like to thank the editor, Prof. Hamasaki, for the opportunity to comment on the thought-provoking work by the NISS working group on unplanned clinical trial disruptions (Van Lancker et al. 2022). The working group’s proposals focus on two basic problems relevant to clinical trials affected by the COVID19 pandemic. The first problem is that, due to the pandemic, the patient population may change systematically over the course of the trial. This raises questions over what is the relevant patient population for which the effect is of interest. The second problem, which receives the major focus in the paper, relates to problems of intercurrent events fueled by the pandemic. The solutions proposed by the working group are interesting and useful. In this commentary, I will nonetheless raise two conceptual shortcomings, which I will attempt to resolve by making more explicit use of methods from causal inference (as opposed to missing data analysis). First, the data collected in a randomized clinical trial are so precious that it is generally difficult to justify ignoring the data collected before or after the start of the pandemic. Those data will often still carry useful information about treatment efficacy, and should ideally be used. Second, whenever possible, analyses of randomized clinical trials should protect the null hypothesis of no treatment effect in the sense that rejection rates should be no larger than the nominal (5%) rate, even when the adopted assumptions fail. Intercurrent events 6 and 7 appear such that they will occur with equal rates in both arms of the trial. If this is so, then this suggests that standard analyses that target the treatment policy estimand, thus ignoring intercurrent events, will protect the null hypothesis of no treatment effect; indeed, the treatment policy estimand then reduces to the balanced estimand of Michiels et al. (2021), which expresses what the treatment effect had been had intercurrent events occurred at “equal rates” in both arms. In this light, analyses that invoke Missing At Random (MAR) assumptions must be taken with caution, as they may be biased whenever the MAR assumption fails. More importantly, analyses that explicitly combine biased and unbiased estimators, as in","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"15 1","pages":"112 - 115"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on” Estimands and their Estimators for Clinical Trials Impacted by the COVID-19 Pandemic: A Report from the NISS Ingram Olkin Forum Series on Unplanned Clinical Trial Disruptions”\",\"authors\":\"S. Vansteelandt\",\"doi\":\"10.1080/19466315.2022.2128405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I would like to thank the editor, Prof. Hamasaki, for the opportunity to comment on the thought-provoking work by the NISS working group on unplanned clinical trial disruptions (Van Lancker et al. 2022). The working group’s proposals focus on two basic problems relevant to clinical trials affected by the COVID19 pandemic. The first problem is that, due to the pandemic, the patient population may change systematically over the course of the trial. This raises questions over what is the relevant patient population for which the effect is of interest. The second problem, which receives the major focus in the paper, relates to problems of intercurrent events fueled by the pandemic. The solutions proposed by the working group are interesting and useful. In this commentary, I will nonetheless raise two conceptual shortcomings, which I will attempt to resolve by making more explicit use of methods from causal inference (as opposed to missing data analysis). First, the data collected in a randomized clinical trial are so precious that it is generally difficult to justify ignoring the data collected before or after the start of the pandemic. Those data will often still carry useful information about treatment efficacy, and should ideally be used. Second, whenever possible, analyses of randomized clinical trials should protect the null hypothesis of no treatment effect in the sense that rejection rates should be no larger than the nominal (5%) rate, even when the adopted assumptions fail. Intercurrent events 6 and 7 appear such that they will occur with equal rates in both arms of the trial. If this is so, then this suggests that standard analyses that target the treatment policy estimand, thus ignoring intercurrent events, will protect the null hypothesis of no treatment effect; indeed, the treatment policy estimand then reduces to the balanced estimand of Michiels et al. (2021), which expresses what the treatment effect had been had intercurrent events occurred at “equal rates” in both arms. In this light, analyses that invoke Missing At Random (MAR) assumptions must be taken with caution, as they may be biased whenever the MAR assumption fails. More importantly, analyses that explicitly combine biased and unbiased estimators, as in\",\"PeriodicalId\":51280,\"journal\":{\"name\":\"Statistics in Biopharmaceutical Research\",\"volume\":\"15 1\",\"pages\":\"112 - 115\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biopharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19466315.2022.2128405\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19466315.2022.2128405","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Comment on” Estimands and their Estimators for Clinical Trials Impacted by the COVID-19 Pandemic: A Report from the NISS Ingram Olkin Forum Series on Unplanned Clinical Trial Disruptions”
I would like to thank the editor, Prof. Hamasaki, for the opportunity to comment on the thought-provoking work by the NISS working group on unplanned clinical trial disruptions (Van Lancker et al. 2022). The working group’s proposals focus on two basic problems relevant to clinical trials affected by the COVID19 pandemic. The first problem is that, due to the pandemic, the patient population may change systematically over the course of the trial. This raises questions over what is the relevant patient population for which the effect is of interest. The second problem, which receives the major focus in the paper, relates to problems of intercurrent events fueled by the pandemic. The solutions proposed by the working group are interesting and useful. In this commentary, I will nonetheless raise two conceptual shortcomings, which I will attempt to resolve by making more explicit use of methods from causal inference (as opposed to missing data analysis). First, the data collected in a randomized clinical trial are so precious that it is generally difficult to justify ignoring the data collected before or after the start of the pandemic. Those data will often still carry useful information about treatment efficacy, and should ideally be used. Second, whenever possible, analyses of randomized clinical trials should protect the null hypothesis of no treatment effect in the sense that rejection rates should be no larger than the nominal (5%) rate, even when the adopted assumptions fail. Intercurrent events 6 and 7 appear such that they will occur with equal rates in both arms of the trial. If this is so, then this suggests that standard analyses that target the treatment policy estimand, thus ignoring intercurrent events, will protect the null hypothesis of no treatment effect; indeed, the treatment policy estimand then reduces to the balanced estimand of Michiels et al. (2021), which expresses what the treatment effect had been had intercurrent events occurred at “equal rates” in both arms. In this light, analyses that invoke Missing At Random (MAR) assumptions must be taken with caution, as they may be biased whenever the MAR assumption fails. More importantly, analyses that explicitly combine biased and unbiased estimators, as in
期刊介绍:
Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems.
Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application).
The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review.
Authors can choose to publish gold open access in this journal.