基于经验似然比的正态性综合检验及其对对称方案的调整

IF 1 Q3 STATISTICS & PROBABILITY
C. Marange, Yongsong Qin
{"title":"基于经验似然比的正态性综合检验及其对对称方案的调整","authors":"C. Marange, Yongsong Qin","doi":"10.1155/2021/6661985","DOIUrl":null,"url":null,"abstract":"An omnibus test for normality with an adjustment for symmetric alternatives is developed using the empirical likelihood ratio technique. We first transform the raw data via a jackknife transformation technique by deleting one observation at a time. The probability integral transformation was then applied on the transformed data, and under the null hypothesis, the transformed data have a limiting uniform distribution, reducing testing for normality to testing for uniformity. Employing the empirical likelihood technique, we show that the test statistic has a chi-square limiting distribution. We also demonstrated that, under the established symmetric settings, the CUSUM-type and Shiryaev–Roberts test statistics gave comparable properties and power. The proposed test has good control of type I error. Monte Carlo simulations revealed that the proposed test outperformed studied classical existing tests under symmetric short-tailed alternatives. Findings from a real data study further revealed the robustness and applicability of the proposed test in practice.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Likelihood Ratio-Based Omnibus Test for Normality with an Adjustment for Symmetric Alternatives\",\"authors\":\"C. Marange, Yongsong Qin\",\"doi\":\"10.1155/2021/6661985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An omnibus test for normality with an adjustment for symmetric alternatives is developed using the empirical likelihood ratio technique. We first transform the raw data via a jackknife transformation technique by deleting one observation at a time. The probability integral transformation was then applied on the transformed data, and under the null hypothesis, the transformed data have a limiting uniform distribution, reducing testing for normality to testing for uniformity. Employing the empirical likelihood technique, we show that the test statistic has a chi-square limiting distribution. We also demonstrated that, under the established symmetric settings, the CUSUM-type and Shiryaev–Roberts test statistics gave comparable properties and power. The proposed test has good control of type I error. Monte Carlo simulations revealed that the proposed test outperformed studied classical existing tests under symmetric short-tailed alternatives. Findings from a real data study further revealed the robustness and applicability of the proposed test in practice.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6661985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6661985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

利用经验似然比技术开发了一种综合正态性检验,并对对称替代方案进行了调整。我们首先通过一次删除一个观测值的折刀变换技术对原始数据进行变换。然后对变换后的数据进行概率积分变换,在零假设下,变换后的数据具有极限均匀分布,将正态性检验简化为均匀性检验。利用经验似然技术,我们证明检验统计量具有卡方极限分布。我们还证明,在已建立的对称设置下,cusum型和Shiryaev-Roberts检验统计量具有相当的性质和功率。该试验对I型误差具有较好的控制效果。蒙特卡罗模拟表明,在对称短尾替代方案下,所提出的测试优于经典的现有测试。实际数据研究的结果进一步揭示了所提出的测试在实践中的稳健性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Likelihood Ratio-Based Omnibus Test for Normality with an Adjustment for Symmetric Alternatives
An omnibus test for normality with an adjustment for symmetric alternatives is developed using the empirical likelihood ratio technique. We first transform the raw data via a jackknife transformation technique by deleting one observation at a time. The probability integral transformation was then applied on the transformed data, and under the null hypothesis, the transformed data have a limiting uniform distribution, reducing testing for normality to testing for uniformity. Employing the empirical likelihood technique, we show that the test statistic has a chi-square limiting distribution. We also demonstrated that, under the established symmetric settings, the CUSUM-type and Shiryaev–Roberts test statistics gave comparable properties and power. The proposed test has good control of type I error. Monte Carlo simulations revealed that the proposed test outperformed studied classical existing tests under symmetric short-tailed alternatives. Findings from a real data study further revealed the robustness and applicability of the proposed test in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信