具有p-范数的有界算子的数值半径

Q4 Mathematics
Sadaf Fakri Moghaddam, A. Mirmostafaee
{"title":"具有p-范数的有界算子的数值半径","authors":"Sadaf Fakri Moghaddam, A. Mirmostafaee","doi":"10.2478/tmmp-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract We study the numerical radius of bounded operators on direct sum of a family of Hilbert spaces with respect to the ℓp-norm, where 1 ≤ p ≤∞. We propose a new method which enables us to prove validity of many inequalities on numerical radius of bounded operators on Hilbert spaces when the underling space is a direct sum of Hilbert spaces with ℓp-norm, where 1 ≤ p ≤ 2. We also provide an example to show that some known results on numerical radius are not true for a space that is the set of bounded operators on ℓp-sum of Hilbert spaces where 2","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"81 1","pages":"155 - 164"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Radius of Bounded Operators with ℓp-Norm\",\"authors\":\"Sadaf Fakri Moghaddam, A. Mirmostafaee\",\"doi\":\"10.2478/tmmp-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the numerical radius of bounded operators on direct sum of a family of Hilbert spaces with respect to the ℓp-norm, where 1 ≤ p ≤∞. We propose a new method which enables us to prove validity of many inequalities on numerical radius of bounded operators on Hilbert spaces when the underling space is a direct sum of Hilbert spaces with ℓp-norm, where 1 ≤ p ≤ 2. We also provide an example to show that some known results on numerical radius are not true for a space that is the set of bounded operators on ℓp-sum of Hilbert spaces where 2\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"81 1\",\"pages\":\"155 - 164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2022-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们研究了Hilbert空间族的直和上有界算子的数值半径ℓp范数,其中1≤p≤∞。我们提出了一种新的方法,使我们能够证明Hilbert空间上有界算子的数值半径上的许多不等式的有效性,当子空间是Hilbert空间的直和时ℓp范数,其中1≤p≤2。我们还提供了一个例子来证明,对于作为上的有界算子集的空间,关于数值半径的一些已知结果是不成立的ℓHilbert空间的p-sum,其中2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Radius of Bounded Operators with ℓp-Norm
Abstract We study the numerical radius of bounded operators on direct sum of a family of Hilbert spaces with respect to the ℓp-norm, where 1 ≤ p ≤∞. We propose a new method which enables us to prove validity of many inequalities on numerical radius of bounded operators on Hilbert spaces when the underling space is a direct sum of Hilbert spaces with ℓp-norm, where 1 ≤ p ≤ 2. We also provide an example to show that some known results on numerical radius are not true for a space that is the set of bounded operators on ℓp-sum of Hilbert spaces where 2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信